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Overview

The decNumber library implements the General Decimal Arithmetic Specification1

in ANSI C. This specification defines a decimal arithmetic which meets the requirements
of commercial, financial, and human-oriented applications. It also matches the decimal
arithmetic in the IEEE 754 Standard for Floating Point Arithmetic.2

The library fully implements the specification, and hence supports integer, fixed-point,
and floating-point decimal numbers directly, including infinite, NaN (Not a Number), and
subnormal values. Both arbitrary-precision and fixed-size representations are supported.

The arbitrary-precision code is optimized and tunable for common values (tens of digits)
but can be used without alteration for up to a billion digits of precision and 9-digit
exponents. It also provides functions for conversions between concrete representations
of decimal numbers, including Packed BCD (4-bit Binary Coded Decimal) and the three
primary IEEE 754 fixed-size formats of decimal floating-point (decimal32, decimal64,
and decimal128).

The three fixed-size formats are also supported by three modules called decFloats (see
page 48), which have an extensive set of functions that work directly from the formats
and provide arithmetical, logical, and shifting operations, together with conversions to
binary integers, Packed BCD, and 8-bit BCD. Most of the functions defined in IEEE 754
are included, together with other functions outside the scope of that standard but essen-
tial for a decimal-only language implementation.

Library structure
The library comprises several modules (corresponding to classes in an object-oriented
implementation). Each module has a header file (for example, decNumber.h) which
defines its data structure, and a source file of the same name (e.g., decNumber.c) which
implements the operations on that data structure. These correspond to the instance
variables and methods of an object-oriented design.

The core of the library is the decNumber module. This uses an arbitrary-precision decimal
number representation designed for efficient computation in software and implements
the arithmetic and logical operations, together with a number of conversions and utilities.
Once a number is held as a decNumber, no further conversions are necessary to carry
out arithmetic.

1 See http://www2.hursley.ibm.com/decimal/ for details; note that this URL may change –
please use a search for the document if necessary.

2 Approved June 2008, expected to be published later in the year.
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Most functions in the decNumber module take as an argument a decContext structure,
which provides the context for operations (precision, rounding mode, etc.) and also con-
trols the handling of exceptional conditions (corresponding to the flags and trap enablers
in a hardware floating-point implementation).

The decNumber representation is variable-length and machine-dependent (for example,
it contains integers which may be big-endian or little-endian).

In addition to the arbitrary-precision decNumber format, three fixed-size compact for-
mats are provided for conversions and interchange.3 These formats are endian-dependent
but otherwise are machine-independent:

decimal32 a 32-bit decimal floating-point representation which provides 7 decimal digits
of precision in a compressed format

decimal64 a 64-bit decimal floating-point representation which provides 16 decimal digits
of precision in a compressed format

decimal128 a 128-bit decimal floating-point representation which provides 34 decimal
digits of precision in a compressed format.

A fourth, machine-independent, Binary Coded Decimal (BCD) format is also provided:

decPacked The decPacked format is the classic packed decimal format implemented by
IBM S/360 and later machines, where each digit is encoded as a 4-bit binary
sequence (BCD) and a number is ended by a 4-bit sign indicator. The
decPacked module accepts variable lengths, allowing for very large numbers
(up to a billion digits), and also allows the specification of a scale.

The module for each format provides conversions to and from the core decNumber format.
The decimal32, decimal64, and decimal128 modules also provide conversions to and from
character string format.

The decimal32, decimal64, and decimal128 formats are also supported directly by three
modules which can be used stand-alone (that is, they have no dependency on the
decNumber module). These are:

decSingle a module that provides the functions for the decimal32 format; this format is
intended for storage and interchange only and so the module provides utilities
and conversions but no arithmetic functions

decDouble a module that provides the functions for the decimal64 format; this format is
an IEEE 754 basic format and so a full set of arithmetic and other functions is
included

decQuad a module that provides the functions for the decimal128 format; this format
is an IEEE 754 basic format; it contains the same set of functions as
decDouble.4

These modules use the same context mechanism (decContext) as decNumber and so can
be used together with the decNumber module when required in order to use the math-

3 See http://www2.hursley.ibm.com/decimal/decbits.html for details of the formats; note
that this URL may change – please use a search for the document if necessary.

4 Except for two which convert to or from a wider format.
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ematical functions in that module or to use its arbitrary-precision capability. Examples
are included in the User’s Guide (see page 4).

Relevant standards
It is intended that, where applicable, functions provided in the decNumber package follow
the requirements of:

• the decimal arithmetic requirements of IEEE 754 except that:

1. the IEEE remainder operator (decNumberRemainderNear) is restricted to those
values where the intermediate integer can be represented in the current preci-
sion, because the conventional implementation of this operator would be very
long-running for the range of numbers supported (up to ±101,000,000,000).

2. the mathematical functions in the decNumber module do not, in general, cor-
respond to the recommended functions in IEEE 754 with the same or similar
names; in particular, the power function has some different special cases, and
most of the functions may be up to one unit wrong in the last place (note,
however, that the squareroot function is correctly rounded)

• the floating-point decimal arithmetic defined in ANSI X3.274-19965 (including errata
through 2001); note that this applies to functions in the decNumber module only,
with appropriate context.

Please advise the author of any discrepancies with these standards.

5 American National Standard for Information Technology – Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.
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User’s Guide

To use the decNumber library efficiently it is best to first convert the numbers you are
working with from strings or another coded representation into decNumber format, then
carry out calculations on them, and finally convert them back into the desired string or
coded format.

Conversions to and from the decNumber format are fast; they are usually faster than all
but the simplest calculations (x=x+1, for example). Therefore, in general, the cost of
conversions is small compared to that of calculation.

The coded formats currently provided for in the library are

• strings (ASCII bytes, terminated by '\0', as usual for C)

• three formats of compressed floating-point decimals

• Packed Decimal numbers with optional scale.

However, when arbitrary-precision calculation is not required (that is, up to 34 digits of
precision is all that is required) it is even more efficient to use one of the decFloats mod-
ules (see page 48) for arithmetic and other operations. The decFloats modules work
directly from the decimal-encoded compressed formats and avoid the need for conversions
to and from the decNumber format. Tables comparing the performance of the decFloats
modules with decNumber can be found in Appendix A (see page 71).

The remainder of this section illustrates the use of the coded formats and the decFloats
modules in conjunction with the core decContext and decNumber modules by means of
examples.
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Notes on running the examples

1. All the examples are written conforming to ANSI C, except that they use “line com-
ment” notation (comments starting with //) from BCPL and C++ for more concise
commentary. Most C compilers support this; if not, a short script can be used to
convert the line comments to traditional block comments (/* ... */). Note that the
decNumber header files use only block comments so do not require conversion.

2. The header files and Example 6 use the standard integer types from stdint.h
described in the ANSI C99 standard (ISO/IEC 9899:1999). If your C compiler does
not supply stdint.h, the following will suffice:

/* stdint.h –– some standard integer types from C99 */
typedef unsigned char uint8_t;
typedef char int8_t;
typedef unsigned short uint16_t;
typedef short int16_t;
typedef unsigned int uint32_t;
typedef int int32_t;
typedef unsigned long long uint64_t;
typedef long long int64_t;

You may need to change these if (for example) the int type in your compiler does
not describe a 32-bit integer. If there are no 64-bit integers available with your
compiler, set the DECUSE64 tuning parameter (see page 67) to 0; the last two
typedefs above are then not needed.

3. Some pieces of the decNumber package are sensitive to the whether the underlying
platform is big-endian or little-endian; for a big-endian machine, set the DECLITEND
tuning parameter (see page 67) to 0.

The code provided for the first and seventh examples (example1.c and example7.c)
includes a call to the decContextTestEndian routine, which will display a warning
if DECLITEND is set incorrectly.

4. One aspect of the examples is implementation-defined. It is assumed that the
default handling of the SIGFPE signal is to end the program. If your implementa-
tion ignores this signal, the lines with set.traps=0; would not be needed in the
simpler examples.
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Example 1 – simple addition

This example is a simple test program which can easily be extended to demonstrate more
complicated operations or to experiment with the functions available.

1. // example1.c –– convert the first two argument words to decNumber,
2. // add them together, and display the result

 3.

4. #define DECNUMDIGITS 34 // work with up to 34 digits
5. #include "decNumber.h" // base number library
6. #include <stdio.h> // for printf

 7.

8. int main(int argc, char *argv[]) {
9. decNumber a, b; // working numbers

10. decContext set; // working context
11. char string[DECNUMDIGITS+14]; // conversion buffer

 12.

13. if (argc<3) { // not enough words
14. printf("Please supply two numbers to add.\n");

 15. return 1;
 16. }
17. decContextDefault(&set, DEC_INIT_BASE); // initialize
18. set.traps=0; // no traps, thank you
19. set.digits=DECNUMDIGITS; // set precision

 20.

21. decNumberFromString(&a, argv[1], &set);
22. decNumberFromString(&b, argv[2], &set);
23. decNumberAdd(&a, &a, &b, &set); // a=a+b

 24. decNumberToString(&a, string);
25. printf("%s + %s => %s\n", argv[1], argv[2], string);

 26. return 0;
27. } // main

This example is a complete, runnable program. In later examples we’ll leave out some
of the “boilerplate”, checking, etc., but this one should compile and be usable as it stands.

Lines 1 and 2 document the purpose of the program.

Line 4 sets the maximum precision of decNumbers to be used by the program, which is
used by the embedded header file in line 5 (and also elsewhere in this program).

Line 6 includes the C library for input and output, so we can use the printf function.
Lines 8 through 11 start the main function, and declare the variables we will use. Lines
13 through 16 check that enough argument words have been given to the program.

Lines 17–19 initialize the decContext structure, turn off error signals, and set the work-
ing precision to the maximum possible for the size of decNumbers we have declared.

Lines 21 and 22 convert the first two argument words into numbers; these are then added
together in line 23, converted back to a string in line 24, and displayed in line 25.

Note that there is no error checking of the arguments in this example, so the result will
be NaN (Not a Number) if one or both words is not a number. Error checking is introduced
in Example 3 (see page 8).
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Example 2 – compound interest

This example takes three parameters (initial amount, interest rate, and number of years)
and calculates the final accumulated investment. For example:

100000 at 6.5% for 20 years => 352364.51

The heart of the program is:

1. decNumber one, mtwo, hundred; // constants
2. decNumber start, rate, years; // parameters

 3. decNumber total; // result
4. decContext set; // working context
5. char string[DECNUMDIGITS+14]; // conversion buffer

 6.

 7. decContextDefault(&set, DEC_INIT_BASE); // initialize
8. set.traps=0; // no traps
9. set.digits=25; // precision 25

10. decNumberFromString(&one, "1", &set); // set constants
 11. decNumberFromString(&mtwo, "–2", &set);
12. decNumberFromString(&hundred, "100", &set);

 13.

14. decNumberFromString(&start, argv[1], &set); // parameter words
 15. decNumberFromString(&rate, argv[2], &set);
16. decNumberFromString(&years, argv[3], &set);

 17.

18. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
19. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
20. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
21. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
22. decNumberRescale(&total, &total, &mtwo, &set); // two digits please

 23.

 24. decNumberToString(&total, string);
25. printf("%s at %s%% for %s years => %s\n",
26. argv[1], argv[2], argv[3], string);

 27. return 0;

These lines would replace the content of the main function in Example 1 (adding the
check for the number of parameters would be advisable).

As in Example 1, the variables to be used are first declared and initialized (lines 1
through 12), with the working precision being set to 25 in this case. The parameter words
are converted into decNumbers in lines 14–16.

The next four function calls calculate the result; first the rate is changed from a per-
centage (e.g., 6.5) to a per annum rate (1.065). This is then raised to the power of the
number of years (which must be a whole number), giving the rate over the total period.
This rate is then multiplied by the initial investment to give the result.

Next (line 22) the result is rescaled so it will have only two digits after the decimal point
(an exponent of –2), and finally (lines 24–26) it is converted to a string and displayed.
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Example 3 – passive error handling

Neither of the previous examples provides any protection against invalid numbers being
passed to the programs, or against calculation errors such as overflow. If errors occur,
therefore, the final result will probably be NaN or infinite (decNumber result structures
are always valid after an operation, but their value may not be useful).

One way to check for errors would be to check the status field of the decContext structure
after every decNumber function call. However, as that field accumulates errors until
cleared deliberately it is often more convenient and more efficient to delay the check until
after a sequence is complete.

This passive checking is easily added to Example 2. Replace lines 14 through 22 in that
example with (the original lines repeated here are unchanged):

1. decNumberFromString(&start, argv[1], &set); // parameter words
 2. decNumberFromString(&rate, argv[2], &set);

3. decNumberFromString(&years, argv[3], &set);
4. if (set.status) {
5. printf("An input argument word was invalid [%s]\n",

 6. decContextStatusToString(&set));
 7. return 1;
 8. }

9. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
10. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
11. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
12. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
13. decNumberRescale(&total, &total, &mtwo, &set); // two digits please
14. if (set.status & DEC_Errors) {
15. set.status &= DEC_Errors; // keep only errors
16. printf("Result could not be calculated [%s]\n",

 17. decContextStatusToString(&set));
 18. return 1;
 19. }

Here, in the if statement starting on line 4, the error message is displayed if the status
field of the set structure is non-zero. The call to decContextStatusToString in line 6
returns a string which describes a set status bit (probably “Conversion syntax”).

In line 14, the test is augmented by anding the set.status value with DEC_Errors. This
ensures that only serious conditions trigger the message. In this case, it is possible that
the DEC_Inexact and DEC_Rounded conditions will be set (if an overflow occurred) so these
are cleared in line 15.

With these changes, messages are displayed and the main function ended if either a bad
input parameter word was found (for example, try passing a non-numeric word) or if the
calculation could not be completed (e.g., try a value for the third argument which is not
an integer).6

6 Of course, in a user-friendly application, more detailed and specific error messages are appropriate. But
here we are demonstrating error handling, not user interfaces.
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Example 4 – active error handling

The last example handled errors passively, by testing the context status field directly. In
this example, the C signal mechanism is used to handle traps which are raised when
errors occur.

When one of the decNumber functions sets a bit in the context status, the bit is compared
with the corresponding bit in the traps field. If that bit is set (is 1) then a C Floating-Point
Exception signal (SIGFPE) is raised. At that point, a signal handler function (previously
identified to the C runtime) is called.

The signal handler function can either simply log or report the trap and then return (and
execution will continue as though the trap had not occurred) or – as in this example – it
can call the C longjmp function to jump to a previously preserved point of execution.

Note that if a jump is used, control will not return to the code which called the
decNumber function that raised the trap, and so care must be taken to ensure that any
resources in use (such as allocated memory) are cleaned up appropriately.

To create this example, modify the Example 1 code this time, by first removing line 18
(set.traps=0;). This will leave the traps field with its default setting, which has all the
DEC_Errors bits set, hence enabling traps for any of those conditions. Then insert after
line 6 (before the main function):

1. #include <signal.h> // signal handling
 2. #include <setjmp.h> // setjmp/longjmp
 3.

4. jmp_buf preserve; // stack snapshot
 5.

6. void signalHandler(int sig) {
 7. signal(SIGFPE, signalHandler); // re–enable

8. longjmp(preserve, sig); // branch to preserved point
 9. }

Here, lines 1 and 2 include definitions for the C library functions we will use. Line 4
declares a global buffer (accessible to both the main function and the signal handler)
which is used to preserve the point of execution to which we will jump after handling the
signal.

Lines 6 through 9 are the signal handler. Line 7 re-enables the signal handler, as
described below (in this example this is in fact unnecessary as we will be ending the
program immediately). This is normally needed as handlers are disabled on entry, and
need to be re-enabled if more than one trap is to be handled.

Line 8 jumps to the point preserved when the program starts up (in the next code insert).
The value, sig, which the signal handler receives is passed to the preserved code. In this
example, sig always has the value SIGFPE, but in a more complicated program the same
signal handler could be used to handle other signals, too.
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The next segment of code is inserted after line 11 of Example 1 (just after the existing
declarations):

1. int value; // work variable
 2.

3. signal(SIGFPE, signalHandler); // set up signal handler
4. value=setjmp(preserve); // preserve and test environment
5. if (value) { // (non–0 after longjmp)
6. set.status &= DEC_Errors; // keep only errors
7. printf("Signal trapped [%s].\n", decContextStatusToString(&set));

 8. return 2;
 9. }

Here, a work variable is declared in line 1 and the signal handler function is registered
(identified to the C run time) in line 3. The call to the signal function identifies the
signal to be handled (SIGFPE) and the function (signalHandler) that will be called when
the signal is raised, and enables the handler.

Next, in line 4, the setjmp function is called. On its first call, this saves the current point
of execution into the preserve variable and then returns 0. The following lines (5–8) are
then not executed and execution of the main function continues as before.

If a trap later occurs (for example, if one of the arguments is not a number) then the
following takes place:

1. the SIGFPE signal is raised by the decNumber library

2. the signalHandler function is called by the C run time with argument SIGFPE

3. the function re-enables the signal, and then calls longjmp

4. this in turn causes the execution stack to be “unwound” to the point which was
preserved in the initial call to setjmp

5. the setjmp function then returns, with the (non-0) value passed to it in the call to
longjmp

6. the test in line 5 then succeeds, so line 6 clears any informational status bits in the
status field in the context structure which was given to the decNumber routines and
line 7 displays a message, using the same structure

7. finally, in line 8, the main function is ended by the return statement.

Of course, different behaviors are possible both in the signal handler, as already noted,
and after the jump; the main program could prompt for new values for the input
parameters and then continue as before, for example.
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Example 5 – compressed formats

The previous examples all used decNumber structures directly, but that format is not
necessarily compact and is machine-dependent. These attributes are generally good for
performance, but are less suitable for the storage and exchange of numbers.

The decimal32, decimal64, and decimal128 forms are provided as efficient, formats used
for storing numbers of up to 7, 16 or 34 decimal digits respectively, in 4, 8, or 16 bytes.
These formats are similar to, and are used in the same manner as, the C float and
double data types.

Here’s an example program. Like Example 1, this is runnable as it stands, although it’s
recommended that at least the argument count check be added.

1. // example5.c –– decimal64 conversions
2. #include "decimal64.h" // decimal64 and decNumber library
3. #include <stdio.h> // for (s)printf

 4.

5. int main(int argc, char *argv[]) {
6. decimal64 a; // working decimal64 number
7. decNumber d; // working number
8. decContext set; // working context
9. char string[DECIMAL64_String]; // number–>string buffer

10. char hexes[25]; // decimal64–>hex buffer
 11. int i; // counter
 12.

13. decContextDefault(&set, DEC_INIT_DECIMAL64); // initialize
 14.

15. decimal64FromString(&a, argv[1], &set);
16. // lay out the decimal64 as eight hexadecimal pairs
17. for (i=0; i<8; i++) {
18. sprintf(&hexes[i*3], "%02x ", a.bytes[i]);

 19. }
 20. decimal64ToNumber(&a, &d);
 21. decNumberToString(&d, string);
22. printf("%s => %s=> %s\n", argv[1], hexes, string);

 23. return 0;
24. } // main

Here, the #include on line 2 not only defines the decimal64 type, but also includes the
decNumber and decContext header files. Also, if DECNUMDIGITS (see page 26) has not
already been defined, the decimal64.h file sets it to 16 so that any decNumbers declared
will be exactly the right size to take any decimal64 without rounding.

The declarations in lines 6–11 create three working structures and other work variables;
the decContext structure is initialized in line 13 (here, set.traps is 0).

Line 15 converts the input argument word to a decimal64 (with a function call very
similar to decNumberFromString). Note that the value would be rounded if the number
needed more than 16 digits of precision.

Lines 16–19 lay out the decimal64 as eight hexadecimal pairs in a string, so that its
encoding can be displayed.
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Lines 20–22 show how decimal64 numbers are used. First the decimal64 is converted to
a decNumber, then arithmetic could be carried out, and finally the decNumber is con-
verted back to some standard form (in this case a string, so it can be displayed in line
22). For example, if the input argument were “79”, the following would be displayed on
a big-endian machine:

79 => 22 38 00 00 00 00 00 79 => 79

(On a little-endian machine the byte order would be reversed.)

The decimal32 and decimal128 forms are used in exactly the same way, for working with
up to 7 or up to 34 digits of precision respectively. These forms have the same constants
and functions as decimal64 (with the obvious name changes).

Like decimal64.h, the decimal32 and decimal128 header files define the DECNUMDIGITS
constant (see page 26) to either 7 or 34 if it has not already been defined.

It is also possible to work with the decimal128 (etc.) formats directly, without converting
to and from the decNumber format; this is much faster when only the fixed-size formats
are needed. Example 7 (see page 14) shows how to use the decQuad module for calcu-
lations in the 128-bit format.
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Example 6 – Packed Decimal numbers

This example reworks Example 2, starting and ending with Packed Decimal numbers.
First, lines 4 and 5 of Example 1 (which Example 2 modifies) are replaced by the line:

 1. #include "decPacked.h"

Then the following declarations are added to the main function:

1. uint8_t startpack[]={0x01, 0x00, 0x00, 0x0C}; // investment=100000
 2. int32_t startscale=0;

3. uint8_t ratepack[]={0x06, 0x5C}; // rate=6.5%
 4. int32_t ratescale=1;

5. uint8_t yearspack[]={0x02, 0x0C}; // years=20
 6. int32_t yearsscale=0;

7. uint8_t respack[16]; // result, packed
 8. int32_t resscale; // ..

9. char hexes[49]; // for packed–>hex
 10. int i; // counter

The first three pairs declare and initialize the three parameters, with a Packed Decimal
byte array and associated scale for each. In practice these might be read from a file or
database. The fourth pair is used to receive the result. The last two declarations (lines
9 and 10) are work variables used for displaying the result.

Next, in Example 2, line 5 is removed, and lines 14 through 26 are replaced by:

1. decPackedToNumber(startpack, sizeof(startpack), &startscale, &start);
2. decPackedToNumber(ratepack, sizeof(ratepack), &ratescale, &rate);
3. decPackedToNumber(yearspack, sizeof(yearspack), &yearsscale, &years);

 4.

5. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
6. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
7. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
8. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
9. decNumberRescale(&total, &total, &mtwo, &set); // two digits please

 10.

11. decPackedFromNumber(respack, sizeof(respack), &resscale, &total);
 12.

13. // lay out the total as sixteen hexadecimal pairs
14. for (i=0; i<16; i++) {
15. sprintf(&hexes[i*3], "%02x ", respack[i]);

 16. }
17. printf("Result: %s (scale=%ld)\n", hexes, (long int)resscale);

Here, lines 1 through 3 convert the Packed Decimal parameters into decNumber struc-
tures. Lines 5-9 calculate and rescale the total, as before, and line 11 converts the final
decNumber into Packed Decimal and scale. Finally, lines 13-17 lay out and display the
result, which should be:

Result: 00 00 00 00 00 00 00 00 00 00 00 03 52 36 45 1c (scale=2)

Note that the number is right-aligned, with a sign nibble.
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Example 7 – Using the decQuad module

This example reworks Example 1, but using the decQuad module for all conversions and
the arithmetic.

1. // example7.c –– using decQuad to add two numbers together
 2.

3. #include "decQuad.h" // decQuad library
4. #include <stdio.h> // for printf

 5.

6. int main(int argc, char *argv[]) {
7. decQuad a, b; // working decQuads
8. decContext set; // working context
9. char string[DECQUAD String]; // number–>string buffer

 10.

11. if (argc<3) { // not enough words
12. printf("Please supply two numbers to add.\.n");

 13. return 1;
 14. }
15. decContextDefault(&set, DEC INIT DECQUAD); // initialize

 16.

17. decQuadFromString(&a, argv[1], &set);
18. decQuadFromString(&b, argv[2], &set);
19. decQuadAdd(&a, &a, &b, &set); // a=a+b

 20. decQuadToString(&a, string);
 21.

22. printf("%s + %s => %s\n", argv[1], argv[2], string);
 23. return 0;
24. } // main

This example is a complete, runnable program. Like Example 1, it takes two argument
words, converts them to a decimal format (in this case decQuad, the 34-digit format),
adds them, and converts the result back to a string for display.

Line 3 includes the decQuad header file. This in turn includes the other necessary
header, decContext. The context variable set is used to set the rounding mode for the
conversions from string and for the add, and its status field is used to report any errors
(not checked in this example). No other field in the context is used.

To compile and run this, only the files example7.c, decContext.c, and decQuad.c are
needed.

To use the 16-digit format instead of the 34-digit format, change decQuad to decDouble
and QUAD to DOUBLE in the example. Note that in this case the file decQuad.c is still
needed (must be compiled), because decDouble requires decQuad.
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Example 8 – Using decQuad with decNumber

This example shows how the decNumber and decQuad modules can be mixed, in this case
to raise one number to the power of another. (In this case, the use of the decQuad module
could be avoided – this is just to demonstrate how to use the two modules together.)

1. // example8.c –– using decQuad with the decNumber module
 2.

3. #include "decQuad.h" // decQuad library
4. #include "decimal128.h" // interface to decNumber
5. #include <stdio.h> // for printf

 6.

7. int main(int argc, char *argv[]) {
8. decQuad a; // working decQuad
9. decNumber numa, numb; // working decNumbers

10. decContext set; // working context
11. char string[DECQUAD String]; // number–>string buffer

 12.

13. if (argc<3) { // not enough words
14. printf("Please supply two numbers for power(2*a, b).\n");

 15. return 1;
 16. }
17. decContextDefault(&set, DEC INIT DECQUAD); // initialize

 18.

19. decQuadFromString(&a, argv[1], &set); // get a
20. decQuadAdd(&a, &a, &a, &set); // double a
21. decQuadToNumber(&a, &numa); // convert to decNumber
22. decNumberFromString(&numb, argv[2], &set);
23. decNumberPower(&numa, &numa, &numb, &set); // numa=numa**numb
24. decQuadFromNumber(&a, &numa, &set); // back via a Quad

 25. decQuadToString(&a, string); // ..
 26.

27. printf("power(2*%s, %s) => %s\n", argv[1], argv[2], string);
 28. return 0;
29. } // main

Here, the decimal128 module is used as a “proxy” between the decNumber and decQuad
formats. The decimal128 and decQuad structures are identical (except in name) so
pointers to the structures can safely be cast from one to the other. The decQuadToNumber
and decQuadFromNumber functions are in fact macros which cast the data pointer and
then use the decimal128ToNumber or decimal128FromNumber function to effect the con-
version. Using a proxy in this way avoids any dependencies between decQuad and
decNumber.

Note that the same decContext structure (set) is used for both decQuad and decNumber
function calls. decQuad uses only the round and status fields, but decNumber also needs
the other fields. All the fields are initialized by the call to decContextDefault.

The inclusion of decimal128.h also sets up the DECNUMDIGITS required and includes
decNumber.h. The decimal128 module requires decimal64 (for shared code and tables),
so the full list of files to compile for this example is: example8.c, decContext.c,
decQuad.c, decNumber.c, decimal128.c, and decimal64.c.
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Module descriptions

The section contains a detailed description of each of the modules in the library. Each
description is in three parts:

1. An overview of the module and a description of its primary data structure.

2. A description of other definitions in the header (.h) file. This summarizes the content
of the header file rather than detailing every constant as it is assumed that users
will have a copy of the header file available.

3. A description of the functions in the source (.c) file. This is a detailed description
of each function and how to use it, the intent being that it should not be necessary
to have the source file available in order to use the functions.

The modules all conform to some general rules:

• They are reentrant (they have no static variables and may safely be used in multi-
threaded applications), and use only aligned integers and strict aliasing.

• All data structures are passed by reference, for best performance. Data structures
whose references are passed as inputs are never altered unless they are also used
as a result. Where appropriate, functions return a reference to a result argument.

• Only arbitrary-precision calculations might allocate memory. Up to some maximum
precision (chosen by a tuning parameter in the decNumberLocal.h file), even these
calculations do not require allocated memory, except for rounded input arguments
and some mathematical functions. Whenever memory is allocated, it is always
released before the function returns or raises any traps. The latter constraint
implies that long jumps may safely be made from a signal handler handling any
traps, for example.

• The names of all modules start with the string “dec”, and the names of all public
constants start with the string “DEC”.

• Public functions (and macros used as functions) in a module have names which start
with the name of the module (for example, decNumberAdd). This naming scheme
corresponds to the common naming scheme in object-oriented languages, where that
function (method) might be called decNumber.add.

• The types int and long are not used; instead types defined in the C99 stdint.h
header file are used to ensure integers are of the correct length.

• Strings always follow C conventions. That is, they are always terminated by a null
character ('\0').
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decContext module

The decContext module defines the data structure used for providing the context for
operations and for managing exceptional conditions. The decNumber module uses all of
these fields for full control of arbitrary-precision arithmetic; the decFloats modules
(decQuad, etc.) are fixed-size and fixed-format and use only the round and status fields.

The decContext structure comprises the following fields:

digits The digits field is used to set the precision to be used for an operation. The
result of an operation will be rounded to this length if necessary, and hence
the space needed for the result decNumber structure is limited by this field.

digits is of type int32_t, and must have a value in the range 1 through
999,999,999.

emax The emax field is used to set the magnitude of the largest adjusted exponent that
is permitted. The adjusted exponent is calculated as though the number were
expressed in scientific notation (that is, except for 0, expressed with one non-
zero digit before the decimal point).

If the adjusted exponent for a result or conversion would be larger than emax
then an overflow results.

emax is of type int32_t, and must have a value in the range 0 through
999,999,999.

emin The emin field is used to set the smallest adjusted exponent that is permitted for
normal numbers. The adjusted exponent is calculated as though the number
were expressed in scientific notation (that is, except for 0, expressed with one
non-zero digit before the decimal point).

If the adjusted exponent for a result or conversion would be smaller than emin
then the result is subnormal. If the result is also inexact, an underflow
results. The exponent of the smallest possible number (closest to zero) will
be emin–digits+1.7 emin is usually set to –emax or to –(emax–1).

emin is of type int32_t, and must have a value in the range –999,999,999
through 0.

round The round field is used to select the rounding algorithm to be used if rounding
is necessary during an operation. It must be one of the values in the rounding
enumeration:

DEC_ROUND_CEILING Round towards +Infinity.

DEC_ROUND_DOWN Round towards 0 (truncation).

DEC_ROUND_FLOOR Round towards –Infinity.

DEC_ROUND_HALF_DOWN Round to nearest; if equidistant, round down.

7 See http://www2.hursley.ibm.com/decimal/decarith.html for details; note that this URL
may change – please use a search for the document if necessary.
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DEC_ROUND_HALF_EVEN Round to nearest; if equidistant, round so that the
final digit is even.

DEC_ROUND_HALF_UP Round to nearest; if equidistant, round up.

DEC_ROUND_UP Round away from 0.

DEC_ROUND_05UP The same as DEC_ROUND_UP, except that rounding up
only occurs if the digit to be rounded up is 0 or 5 and
after Overflow the result is the same as for
DEC_ROUND_DOWN.

DEC_ROUND_DEFAULT The same as DEC_ROUND_HALF_EVEN.

status The status field comprises one bit for each of the exceptional conditions
described in the specifications (for example, Division by zero is indicated by
the bit defined as DEC_Division_by_zero). Once set, a bit remains set until
cleared by the user, so more than one condition can be recorded.

status is of type uint32_t (unsigned integer). Bits in the field must only be
set if they are defined in the decContext header file. In use, bits are set by
the decNumber library modules when exceptional conditions occur, but are
never reset. The library user should clear the bits when appropriate (for
example, after handling the exceptional condition), but should never set them.

traps The traps field is used to indicate which of the exceptional conditions should
cause a trap. That is, if an exceptional condition bit is set in the traps field,
then a trap event occurs when the corresponding bit in the status field is set
and decContextSetStatus is called (which happens automatically at the end
of any operation which sets a status bit).

In this implementation, a trap is indicated by raising the signal SIGFPE
(defined in signal.h), the Floating-Point Exception signal.

Applications may ignore traps, or may use them to recover from failed oper-
ations. Alternatively, applications can prevent all traps by clearing the traps
field, and inspect the status field directly to determine if errors have occurred.

traps is of type uint32_t. Bits in the field must only be set if they are defined
in the decContext header file.

Note that the result of an operation is always a valid number, but after an
exceptional condition has been detected its value may be one of the special
values (NaN or infinite). These values can then propagate through other
operations without further conditions being raised.

clamp The clamp field controls explicit exponent clamping, as is applied when a result
is encoded in one of the compressed formats. When 0, a result exponent is
limited to a maximum of emax and a minimum of emin (for example, the
exponent of a zero result will be clamped to be in this range). When 1, a result
exponent has the same minimum but is limited to a maximum of
emax–(digits–1). As well as clamping zeros, this may cause the coefficient of a
result to be padded with zeros on the right in order to bring the exponent
within range.
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For example, if emax is +96 and digits is 7, the result 1.23E+96 would have a
[sign, coefficient, exponent] of [0, 123, 94] if clamp were 0, but would give [0,
1230000, 90] if clamp were 1.

Also when 1, clamp limits the length of NaN payloads to digits–1 (rather than
digits) when constructing a NaN by conversion from a string.

clamp is of type uint8_t (an unsigned byte).

extended The extended field controls the level of arithmetic supported. When 1, special
values are possible, some extra checking required for IEEE 754 conformance
is enabled, and subnormal numbers can result from operations (that is, results
whose adjusted exponent is as low as emin–(digits–1) are possible). When 0, the
X3.274 subset is supported; in particular, –0 is not possible, operands are
rounded, and the exponent range is balanced.

If extended will always be 1, then the DECSUBSET tuning parameter (see page
68) may be set to 0 in decContext.h. This will remove the extended field from
the structure, and also remove all code that refers to it. This gives a
10%–20% speed improvement for many operations.

extended is of type uint8_t (an unsigned byte).

Please see the arithmetic specification for further details on the meaning of specific set-
tings (for example, the rounding mode).

Definitions

The decContext.h header file defines the context used by most functions in the
decNumber module; it is therefore automatically included by decNumber.h. In addition
to defining the decContext data structure described above, it also includes:

• The enumeration of the rounding modes supported by this implementation (for the
round field of the decContext).

• The decClass enumeration (and corresponding strings) which is used to classify
numbers with the decNumberClass function (see page 37) or the equivalent func-
tions in decQuad, etc.

• The exceptional condition flags, used in the status and traps fields. The flags used can
be modified by the DECEXTFLAG tuning parameter (see page 67).

• Constants describing the range of precision and adjusted exponent supported by the
decNumber package.

• Groupings for the exceptional conditions flags, indicating how they correspond to the
named conditions defined in IEEE 754, which are usually considered errors
(DEC_Errors), etc.

• A character constant naming each of the exceptional conditions (intended for
human-readable error reporting).

• Constants used for selecting initialization schemes.

• Definitions of the public functions in the decContext module.
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Several of the exceptional condition flags merit special attention:

• The DEC_Clamped flag is set whenever the exponent of a result is clamped to an
extreme value, derived from emax or emin and possibly modified by clamp.

• The DEC_Inexact flag is set whenever a result is inexact (non-zero digits were dis-
carded) due to rounding of input operands or the result.

• The DEC_Lost_digits flag is set when an input operand is made inexact through
rounding (which can only occur if extended is 0).

• The DEC_Rounded flag is set whenever a result or input operand is rounded (even if
only zero digits were discarded).

• The DEC_Subnormal flag is set whenever a result is a subnormal value.

Unlike the other status flags, which indicate error conditions, execution continues
normally when these events occur and the result is a number (unless an error condition
also occurs). As usual, any or all of the conditions can be enabled for traps and in this
case the operation is completed before the trap takes place.

Note that of the above only the DEC_Inexact flag is set by the decFloats modules. The
other informational flags are only set by the decNumber module.

Functions

The decContext.c source file contains the public functions defined in the header file, as
follows. In all these functions, only status bits (etc.) that are defined in the decContext.h
header file should be used.8

decContextClearStatus(context, status)

This function is used to clear (set to zero) one or more status bits in the status field of a
decContext.

The arguments are:

context (decContext *) Pointer to the structure whose status is to be updated.

status (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit
to be cleared in the context status field.

Returns context.

decContextDefault(context, kind)

This function is used to initialize a decContext structure to default values. It is stongly
recommended that this function always be used to initialize a decContext structure, even
if most or all of the fields are to be set explicitly (in case new fields are added to a later
version of the structure).

8 If “private” bits were allowed, future extension of the library with other conditions would be impossible.
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The arguments are:

context (decContext *) Pointer to the structure to be initialized.

kind (int32_t) The kind of initialization to be performed. Only the values defined
in the decContext header file are permitted (any other value will initialize the
structure to a valid condition, but with the DEC_Invalid_operation status bit
set).

When kind is DEC_INIT_BASE, the defaults for the ANSI X3.274 arithmetic
subset are set. That is, the digits field is set to 9, the emax field is set to
999999999, the round field is set to ROUND_HALF_UP, the status field is cleared
(all bits zero), the traps field has all the DEC_Errors bits set (DEC_Rounded,
DEC_Inexact, DEC_Lost_digits, and DEC_Subnormal are 0), clamp is set to 0,
and extended (if present) is set to 0.

When kind is DEC_INIT_DECIMAL32 or DEC_INIT_DECSINGLE, defaults for a
decimal32 number using IEEE 754 rules are set. That is, the digits field is set
to 7, the emax field is set to 96, the emin field is set to –95, the round field is
set to DEC_ROUND_HALF_EVEN, the status field is cleared (all bits zero), the traps
field is cleared (no traps are enabled), clamp is set to 1, and extended (if present)
is set to 1.

When kind is DEC_INIT_DECIMAL64 or DEC_INIT_DECDOUBLE, defaults for a
decimal64 number using IEEE 754 rules are set. That is, the digits field is set
to 16, the emax field is set to 384, the emin field is set to –383, and the other
fields are set as for DEC_INIT_DECIMAL32.

When kind is DEC_INIT_DECIMAL128 or DEC_INIT_DECQUAD, defaults for a
decimal128 number using IEEE 754 rules are set. That is, the digits field is set
to 34, the emax field is set to 6144, the emin field is set to –6143, and the other
fields are set as for DEC_INIT_DECIMAL32.

Returns context.

decContextGetRounding(context)

This function is used to return the round (rounding mode) field of a decContext.

The argument is:

context (decContext *) Pointer to the structure whose rounding mode is to be
returned.

Returns the enum rounding rounding mode.

decContextGetStatus(context)

This function is used to return the status field of a decContext.

The argument is:

context (decContext *) Pointer to the structure whose status is to be returned.

Returns the uint32_t status field.
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decContextRestoreStatus(context, status, mask)
This function is used to restore one or more status bits in the status field of a decContext
from a saved status field.

The arguments are:

context (decContext *) Pointer to the structure whose status is to be updated.

status (uint32_t) A saved status field (as saved by decContextSaveStatus or
retrieved by decContextGetStatus).

mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit
to be restored (set to 0 or 1, taken from the corresponding bit in status) in the
context status field.

Returns context.

Note that setting a bit using this function does not cause a trap (use the
decContextSetStatus function can be used to raise a trap, if desired).

decContextSaveStatus(context, mask)
This function is used to save one or more status bits from the status field of a decContext.

The arguments are:

context (decContext *) Pointer to the structure whose status is to be saved.

mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit
to be saved from the context status field.

Returns the uint32_t which is the logical And of the context status field and the mask.

decContextSetRounding(context, rounding)
This function is used to set the rounding mode in the round field of a decContext.

The arguments are:

context (decContext *) Pointer to the structure whose rounding mode is to be set.

rounding (enum rounding) The rounding mode to be copied to the context round field.

Returns context.

decContextSetStatus(context, status)
This function is used to set one or more status bits in the status field of a decContext. If
any of the bits being set have the corresponding bit set in the traps field, a trap is raised
(regardless of whether the bit is already set in the status field). Only one trap is raised
even if more than one bit is being set.

The arguments are:

context (decContext *) Pointer to the structure whose status is to be set.

status (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit
to be set in the context status field.

Returns context.
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Normally, only library modules use this function. Applications may clear status bits but
should not set them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a
C long jump, and hence control may not return from the function. It should therefore
only be invoked when any state and resources used (such as allocated memory) are clean.

decContextSetStatusFromString(context, string)

This function is used to set a status bit in the status field of a decContext, using the name
of the bit as returned by the decContextStatusToString function. If the bit being set has
the corresponding bit set in the traps field, a trap is raised (regardless of whether the bit
is already set in the status field).

The arguments are:

context (decContext *) Pointer to the structure whose status is to be set.

string (char *) A string which must be exactly equal to one that might be returned
by decContextStatusToString. If the string is “No status”, the status is not
changed and no trap is raised. If the string is “Multiple status”, or is not
recognized, then the call is in error.

Returns context unless the string is in error, in which case NULL is returned.

Normally, only library and test modules use this function. Applications may clear status
bits but should not set them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a
C long jump, and hence control may not return from the function. It should therefore
only be invoked when any state and resources used (such as allocated memory) are clean.

decContextSetStatusFromStringQuiet(context, string)

This function is identical to decContextSetStatusFromString except that the context traps
field is ignored (i.e., no trap is raised).

decContextSetStatusQuiet(context, status)

This function is identical to decContextSetStatus except that the context traps field is
ignored (i.e., no trap is raised).

decContextStatusToString(context)

This function returns a pointer (char *) to a human-readable description of a status bit.
The string pointed to will be a constant.

The argument is:

context (decContext *) Pointer to the structure whose status is to be returned as a
string. The bits set in the status field must comprise only bits defined in the
header file.

If no bits are set in the status field, a pointer to the string “No status” is returned. If
more than one bit is set, a pointer to the string “Multiple status” is returned.
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Note that the content of the string pointed to is a programming interface (it is understood
by the decContextSetStatusFromString function) and is therefore not language- or
locale-dependent.

decContextTestEndian(quiet)
This function checks that the DECLITEND tuning parameter (see page 67) is set correctly.

The argument is:

quiet (uint8 t) If 0, a warning message is displayed (using printf) if DECLITEND is
set incorrectly. If 1, no message is displayed.

Returns 0 if the DECLITEND parameter is correct, 1 if it is incorrect and should be set to
1, and &minus;1 if it is incorrect and should be set to 0.

decContextTestSavedStatus(status, mask)
This function is used to test one or more status bits in a saved status field.

The arguments are:

status (uint32_t) A saved status field (as saved by decContextSaveStatus or
retrieved by decContextGetStatus).

mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit
in status to be included in the test.

Returns the uint32_t which is the logical And of status and mask.

decContextTestStatus(context, mask)
This function is used to test one or more status bits in a context.

The arguments are:

context (decContext *) Pointer to the structure whose status is to be tested.

mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit
in context status field to be included in the test.

Returns the uint32_t which is the logical And of the context status field and mask.

decContextZeroStatus(context)
This function is used to clear (set to zero) all the status bits in the status field of a
decContext.

The argument is:

context (decContext *) Pointer to the structure whose status is to be zeroed.

Returns context.
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decNumber module

The decNumber module defines the data structure used for representing numbers in a
form suitable for computation, and provides the functions for operating on those values.

The decNumber structure is optimized for efficient processing of relatively short numbers
(tens or hundreds of digits); in particular it allows the use of fixed sized structures and
minimizes copy and move operations. The functions in the module, however, support
arbitrary precision arithmetic (up to 999,999,999 decimal digits, with exponents up to 9
digits).

The essential parts of a decNumber are the coefficient, which is the significand of the
number, the exponent (which indicates the power of ten by which the coefficient should be
multiplied), and the sign, which is 1 if the number is negative, or 0 otherwise. The
numerical value of the number is then given by: (–1)sign × coefficient × 10exponent.

Numbers may also be a special value. The special values are NaN (Not a Number), which
may be quiet (propagates quietly through operations) or signaling (raises the Invalid oper-
ation condition when encountered), and ±infinity.

These parts are encoded in the four fields of the decNumber structure:

digits The digits field contains the length of the coefficient, in decimal digits.

digits is of type int32_t, and must have a value in the range 1 through
999,999,999.

exponent The exponent field holds the exponent of the number. Its range is limited by
the requirement that the range of the adjusted exponent of the number be bal-
anced and fit within a whole number of decimal digits (in this implementation,
be –999,999,999 through +999,999,999). The adjusted exponent is the expo-
nent that would result if the number were expressed with a single digit before
the decimal point, and is therefore given by exponent+digits–1.

When the extended flag in the context is 1, gradual underflow (using subnormal
values) is enabled. In this case, the lower limit for the adjusted exponent
becomes –999,999,999–(precision–1), where precision is the digits setting from
the context; the adjusted exponent may then have 10 digits.

exponent is of type int32_t.

bits The bits field comprises one bit which indicates the sign of the number (1 for
negative, 0 otherwise), 3 bits which indicate the special values, and 4 further
bits which are unused and reserved. These reserved bits must be zero.

If the number has a special value, just one of the indicator bits (DECINF,
DECNAN, or DECSNAN) will be set (along with DECNEG iff the sign is 1). If DECINF
is set digits must be 1 and the other fields must be 0. If the number is a NaN,
the exponent must be zero and the coefficient holds any diagnostic information
(with digits indicating its length, as for finite numbers). A zero coefficient
indicates no diagnostic information.

bits is of type uint8_t (an unsigned byte). Masks for the named bits, and some
useful macros, are defined in the header file.
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lsu The lsu field is one or more units in length (of type decNumberUnit, an unsigned
integer), and contains the digits of the coefficient. Each unit represents one or
more of the digits in the coefficient and has a binary value in the range 0
through 10n

–1, where n is the number of digits in a unit, set by the compile-
time definition DECDPUN (see page 69). The size of a unit is the smallest of 1,
2, or 4 bytes which will contain the maximum value held in the unit.

The units comprising the coefficient start with the least significant unit (lsu).
Each unit except the most significant unit (msu) contains DECDPUN digits. The
msu contains from 1 through DECDPUN digits, and must not be 0 unless digits
is 1 (for the value zero). Leading zeros in the msu are never included in the
digits count, except for the value zero.

The number of units predefined for the lsu field is determined by
DECNUMDIGITS, which defaults to 1 (the number of units will be DECNUMDIGITS
divided by DECDPUN, rounded up to a whole unit).

For many applications, there will be a known maximum length for numbers
and DECNUMDIGITS can be set to that length, as in Example 1 (see page 6).
In others, the length may vary over a wide range and it then becomes the
programmer’s responsibility to ensure that there are sufficient units available
immediately following the decNumber lsu field. This can be achieved by
enclosing the decNumber in other structures which append various lengths
of unit arrays, or in the more general case by allocating storage with sufficient
space for the other decNumber fields and the units of the number.

lsu is an array of type decNumberUnit (an unsigned integer whose length
depends on the value of DECDPUN), with at least one element. If digits needs
fewer units than the size of the array, remaining units are not used (they will
neither be changed nor referenced). For special values, only the first unit need
be 0.

It is expected that decNumbers will usually be constructed by conversions from other
formats, such as strings or decimal64 structures, so the decNumber structure is in some
sense an “internal” representation; in particular, it is machine-dependent.9

Examples:

If DECDPUN were 4, the value –1234.50 would be encoded with:

digits = 6
exponent = –2
bits = 0x80
lsu = {3450, 12}

the value 0 would be:

digits = 1
exponent = 0
bits = 0x00
lsu = {0}

9 The layout of an integer might be big-endian or little-endian, for example.
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and –∞ (minus infinity) would be:

digits = 1
exponent = 0
bits = 0xC0
lsu = {0}

Definitions

The decNumber.h header file defines the decNumber data structure described above. It
also includes:

• The tuning parameter DECDPUN.

This sets the number of digits held in one unit (see page 26), which in turn alters the
performance and other characteristics of the library. Further details are given in
the tuning section (see page 69).

If this parameter is changed, the decNumber.c source file must be recompiled for the
change to have effect.

• The decClass enumeration (and corresponding strings) which is used to classify
decNumbers with the decNumberClass function (see page 37).

• Constants naming the bits in the bits field, such as DECNEG, the sign bit.

• Definitions of the public functions and macros in the decNumber module.
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Functions

The decNumber.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings, the arithmetic and logical operations,
and some utility functions.

The functions all follow some general rules:

• Operands to the functions which are decNumber structures (referenced by an argu-
ment) are never modified unless they are also specified to be the result structure
(which is always permitted).

Often, operations which do specify an operand and result as the same structure can
be carried out in place, giving improved performance. For example, x=x+1, using the
decNumberAdd function, can be several times faster than x=y+1.

• Each function forms its primary result by setting the content of one of the structures
referenced by the arguments; a pointer to this structure is returned by the function.

• Exceptional conditions and errors are reported by setting a bit in the status field of
a referenced decContext structure (see page 17). The corresponding bit in the traps
field of the decContext structure determines whether a trap is then raised, as also
described earlier.

• If an argument to a function is corrupt (it is a NULL reference, or it is an input argu-
ment and the content of the structure it references is inconsistent), the function is
unprotected (may “crash”) unless DECCHECK is enabled (see the next rule). However,
in normal operation (that is, no argument is corrupt), the result will always be a
valid decNumber structure. The value of the decNumber result may be infinite or
a quiet NaN if an error was detected (i.e., if one of the DEC_Errors bits (see page 19)
is set in the decContext status field).

• For best performance, input operands are assumed to be valid (not corrupt) and are
not checked unless DECCHECK (see page 70) is 1, which enables full operand checking.
Whether DECCHECK is 0 or 1, the value of a result is undefined if an argument is
corrupt. DECCHECK checking is a diagnostic tool only; it will report the error and
prevent code failure by ensuring that results are valid numbers (unless the result
reference is NULL), but it does not attempt to correct arguments.

Conversion functions

The conversion functions build a decNumber from a string, or lay out a decNumber as a
character string. Additional Utility functions (see page 37) are included in the package
for conversions to and from BCD strings and binary integers.

decNumberFromString(number, string, context)
This function is used to convert a character string to decNumber format. It implements
the to–number conversion from the arithmetic specification.

The conversion is exact provided that the numeric string has no more significant digits
than are specified in context.digits and the adjusted exponent is in the range specified
by context.emin and context.emax. If there are more than context.digits digits in
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the string, or the exponent is out of range, the value will be rounded as necessary using
the context.round rounding mode. The context.digits field therefore both determines
the maximum precision for unrounded numbers and defines the minimum size of the
decNumber structure required.

The arguments are:

number (decNumber *) Pointer to the structure to be set from the character string.

string (char *) Pointer to the input character string. This must be a valid numeric
string, as defined in the appropriate specification. The string will not be
altered.

context (decContext *) Pointer to the context structure whose digits, emin, and emax
fields indicate the maximum acceptable precision and exponent range, and
whose status field is used to report any errors. If its extended field is 1, then
special values (±Inf, ±Infinity, ±NaN, or ±sNaN, independent of case) are
accepted, and the sign and exponent of zeros are preserved. NaNs may also
specify diagnostic information as a string of digits following the name.

Returns number.

Possible errors are DEC_Conversion_syntax (the string does not have the syntax of a
number, which depends on the setting of extended in the context), DEC_Overflow (the
adjusted exponent of the number is larger than context.emax), or DEC_Underflow (the
adjusted exponent is less than context.emin and the conversion is not exact). If any of
these conditions are set, the number structure will have a defined value as described in
the arithmetic specification (this may be a subnormal or infinite value).

decNumberToString(number, string)

This function is used to convert a decNumber number to a character string, using scien-
tific notation if an exponent is needed (that is, there will be just one digit before any
decimal point). It implements the to–scientific–string conversion.

The arguments are:

number (decNumber *) Pointer to the structure to be converted to a string.

string (char *) Pointer to the character string buffer which will receive the con-
verted number. It must be at least 14 characters longer than the number of
digits in the number (number–>digits).

Returns string.

No error is possible from this function. Note that non-numeric strings (one of
+Infinity, –Infinity, NaN, or sNaN) are possible, and NaNs may have a – sign and/or
diagnostic information.

decNumberToEngString(number, string)

This function is used to convert a decNumber number to a character string, using engi-
neering notation (where the exponent will be a multiple of three, and there may be up
to three digits before any decimal point) if an exponent is needed. It implements the
to–engineering–string conversion.
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The arguments and result are the same as for the decNumberToString function, and
similarly no error is possible from this function.

Arithmetic and logical functions

The arithmetic and logical functions all follow the same syntax and rules, and are sum-
marized below. They all take the following arguments:

number (decNumber *) Pointer to the structure where the result will be placed.

lhs (decNumber *) Pointer to the structure which is the left hand side (lhs) oper-
and for the operation. This argument is omitted for monadic operations.

rhs (decNumber *) Pointer to the structure which is the right hand side (rhs)
operand for the operation.

context (decContext *) Pointer to the context structure whose settings are used for
determining the result and for reporting any exceptional conditions.

Each function returns number. The decNumberFMA function (see page 31) also takes a
third numeric operand fhs (decNumber *), a pointer to the structure which is the “far hand
side” operand for the operation.

Some functions, such as decNumberExp, are described as mathematical functions. These
have some restrictions: context.emax must be < 106, context.emin must be > –106, and
context.digits must be < 106. Non-zero operands to these functions must also fit within
these bounds.

The precise definition of each operation can be found in the specification document.

decNumberAbs(number, rhs, context)

The number is set to the absolute value of the rhs. This has the same effect as
decNumberPlus unless rhs is negative, in which case it has the same effect as
decNumberMinus.

decNumberAdd(number, lhs, rhs, context)

The number is set to the result of adding the lhs to the rhs.

decNumberAnd(number, lhs, rhs, context)

The number is set to the result of the digit-wise logical and of lhs and rhs.

decNumberCompare(number, lhs, rhs, context)

This function compares two numbers numerically. If the lhs is less than the rhs then the
number will be set to the value –1. If they are equal (that is, when subtracted the result
would be 0), then number is set to 0. If the lhs is greater than the rhs then the number will
be set to the value 1. If the operands are not comparable (that is, one or both is a NaN)
the result will be NaN.
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decNumberCompareSignal(number, lhs, rhs, context)

This function compares two numbers numerically. It is identical to decNumberCompare
except that all NaNs (including quiet NaNs) signal.

decNumberCompareTotal(number, lhs, rhs, context)

This function compares two numbers using the IEEE 754 total ordering. If the lhs is less
than the rhs in the total order then the number will be set to the value –1. If they are
equal, then number is set to 0. If the lhs is greater than the rhs then the number will be
set to the value 1.

The total order differs from the numerical comparison in that: –NaN < –sNaN <
–Infinity < –finites < –0 < +0 < +finites < +Infinity < +sNaN < +NaN. Also, 1.000 < 1.0
(etc.) and NaNs are ordered by payload.

decNumberCompareTotalMag(number, lhs, rhs, context)

This function compares the magnitude of two numbers using the IEEE 754 total ordering.
It is identical to decNumberCompareTotal except that the signs of the operands are
ignored and taken to be 0 (non-negative).

decNumberDivide(number, lhs, rhs, context)

The number is set to the result of dividing the lhs by the rhs.

decNumberDivideInteger(number, lhs, rhs, context)

The number is set to the integer part of the result of dividing the lhs by the rhs.

Note that it must be possible to express the result as an integer. That is, it must have
no more digits than context.digits. If it does then DEC_Division_impossible is raised.

decNumberExp(number, rhs, context)

The number is set to e raised to the power of rhs, rounded if necessary using the digits
setting in the context and using the round–half–even rounding algorithm.

Finite results will always be full precision and inexact, except when rhs is a zero or
–Infinity (giving 1 or 0 respectively). Inexact results will almost always be correctly
rounded, but may be up to 1 ulp (unit in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above.

decNumberFMA(number, lhs, rhs, fhs, context)

The number is set to the result of multiplying the lhs by the rhs and then adding fhs to that
intermediate result. It is equivalent to a multiplication followed by an addition except
that the intermediate result is not rounded and will not cause overflow or underflow.
That is, only the final result is rounded and checked.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above.
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decNumberInvert(number, rhs, context)

The number is set to the result of the digit-wise inversion of rhs (A 0 digit becomes 1 and
vice versa.)

decNumberLn(number, rhs, context)

The number is set to the natural logarithm (logarithm in base e) of rhs, rounded if neces-
sary using the digits setting in the context and using the round–half–even rounding algo-
rithm. rhs must be positive or a zero.

Finite results will always be full precision and inexact, except when rhs is equal to 1,
which gives an exact result of 0. Inexact results will almost always be correctly rounded,
but may be up to 1 ulp (unit in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above.

decNumberLogB(number, rhs, context)

The number is set to the adjusted exponent of rhs, according to the rules for the “logB”
operation of IEEE 754. This returns the exponent of rhs as though its decimal point had
been moved to follow the first digit while keeping the same value. The result is not
limited by emin or emax.

decNumberLog10(number, rhs, context)

The number is set to the logarithm in base ten of rhs, rounded if necessary using the digits
setting in the context and using the round–half–even rounding algorithm. rhs must be posi-
tive or a zero.

Finite results will always be full precision and inexact, except when rhs is equal to an
integral power of ten, in which case the result is the exact integer.

Inexact results will almost always be correctly rounded, but may be up to 1 ulp (unit in
last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above.

decNumberMax(number, lhs, rhs, context)

This function compares two numbers numerically and sets number to the larger. If the
numbers compare equal then number is chosen with regard to sign and exponent. Unu-
sually, if one operand is a quiet NaN and the other a number, then the number is
returned.

decNumberMaxMag(number, lhs, rhs, context)

This function compares the magnitude of two numbers numerically and sets number to the
larger. It is identical to decNumberMax except that the signs of the operands are ignored
and taken to be 0 (non-negative).
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decNumberMin(number, lhs, rhs, context)

This function compares two numbers numerically and sets number to the smaller. If the
numbers compare equal then number is chosen with regard to sign and exponent. Unu-
sually, if one operand is a quiet NaN and the other a number, then the number is
returned.

decNumberMinMag(number, lhs, rhs, context)

This function compares the magnitude of two numbers numerically and sets number to the
smaller. It is identical to decNumberMin except that the signs of the operands are
ignored and taken to be 0 (non-negative).

decNumberMinus(number, rhs, context)

The number is set to the result of subtracting the rhs from 0. That is, it is negated, fol-
lowing the usual arithmetic rules; this may be used for implementing a prefix minus
operation.

decNumberMultiply(number, lhs, rhs, context)

The number is set to the result of multiplying the lhs by the rhs.

decNumberNextMinus(number, rhs, context)

The number is set to the closest value to rhs in the direction of –Infinity. This is computed
as though by subtracting an infinitesimal amount from rhs using DEC_ROUND_FLOOR,
except that no flags are set unless rhs is an sNaN.

This function is a generalization of the IEEE 754 nextDown operation.

decNumberNextPlus(number, rhs, context)

The number is set to the closest value to rhs in the direction of +Infinity. This is computed
as though by adding an infinitesimal amount to rhs using DEC_ROUND_CEILING, except
that no flags are set unless rhs is an sNaN.

This function is a generalization of the IEEE 754 nextUp operation.

decNumberNextToward(number, lhs, rhs, context)

The number is set to the closest value to lhs in the direction of rhs. This is computed as
though by adding or subtracting an infinitesimal amount to lhs using DEC_ROUND_CEILING
or DEC_ROUND_FLOOR, depending on whether rhs is larger or smaller than lhs. If rhs is
numerically equal to lhs then the result is a copy of lhs with the sign taken from rhs. Flags
are set as usual for an addition or subtraction except that if the operands are equal or
the result is normal (finite, non-zero, and not subnormal) no flags are set.

This function is a generalization of the proposed IEEE 754 nextAfter operation.10

10 The nextAfter operation was dropped from the proposed standard during the ballot process.
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decNumberOr(number, lhs, rhs, context)
The number is set to the result of the digit-wise logical inclusive or of lhs and rhs.

decNumberPlus(number, rhs, context)
The number is set to the result of adding the rhs to 0. This takes place according to the
settings given in the context, following the usual arithmetic rules. This may therefore be
used for rounding or for implementing a prefix plus operation.

decNumberPower(number, lhs, rhs, context)
The number is set to the result of raising the lhs to the power of the rhs, rounded if nec-
essary using the settings in the context.

Results will be exact when the rhs has an integral value and the result does not need to
be rounded, and also will be exact in certain special cases, such as when the lhs is a zero
(see the arithmetic specification for details).

Inexact results will always be full precision, and will almost always be correctly rounded,
but may be up to 1 ulp (unit in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above, except that the normal range of values and context is allowed if the rhs
has an integral value in the range –1999999997 through +999999999.11

decNumberQuantize(number, lhs, rhs, context)

This function is used to modify a number so that its exponent has a specific value, equal
to that of the rhs. The decNumberRescale (see page 35) function may also be used for this
purpose, but requires the exponent to be given as a decimal number.

When rhs is a finite number, its exponent is used as the requested exponent (it provides
a “pattern” for the result). Its coefficient and sign are ignored.

The number is set to a value which is numerically equal (except for any rounding) to the
lhs, modified as necessary so that it has the requested exponent. To achieve this, the
coefficient of the number is adjusted (by rounding or shifting) so that its exponent has the
requested value. For example, if the lhs had the value 123.4567, and the rhs had the
value 0.12, the result would be 123.46 (that is, 12346 with an exponent of –2, matching
the exponent of the rhs).

Note that the exponent of the rhs may be positive, which will lead to the number being
adjusted so that it is a multiple of the specified power of ten.

If adjusting the exponent would mean that more than context.digits would be needed
in the coefficient, then the DEC_Invalid_operation condition is raised. This guarantees
that in the absence of error the exponent of number is always equal to that of the rhs.

If either operand is a special value then the usual rules apply, except that if either operand
is infinite and the other is finite then the DEC_Invalid_operation condition is raised,
or if both are infinite then the result is the first operand.

11 This relaxation of the restrictions provides upwards compatibility with an earlier version of the
decNumberPower function which could only handle an rhs with an integral value.
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decNumberRemainder(number, lhs, rhs, context)
Integer-divides lhs by rhs and places the remainder from the division in number.

That is, if the same lhs, rhs, and context arguments were given to the
decNumberDivideInteger and decNumberRemainder functions, resulting in i and r
respectively, then the identity

lhs = (i × rhs) + r

holds.

Note that, as for decNumberDivideInteger, it must be possible to express the integer part
of the result (i) as an integer. That is, it must have no more digits than
context.digits. If it does have more then DEC_Division_impossible is raised.

decNumberRemainderNear(number, lhs, rhs, context)
The number is set to the remainder when lhs is divided by the rhs, using the rules defined
in IEEE 754. This follows the same definition as decNumberRemainder, except that the
nearest integer (or the nearest even integer if the remainder is equidistant from two) is
used for i instead of the result from decNumberDivideInteger.

For example, if lhs had the value 10 and rhs had the value 6 then the result would be -2
(instead of 4) because the nearest multiple of 6 is 12 (rather than 6).

decNumberRescale(number, lhs, rhs, context)
This function is used to rescale a number so that its exponent has a specific value, given
by the rhs. The decNumberQuantize (see page 34) function may also be used for this
purpose, and is often easier to use.

The rhs must be a whole number (before any rounding); that is, any digits in the frac-
tional part of the number must be zero. It must have no more than nine digits, or
context.digits digits, (whichever is smaller) in the integer part of the number.

The number is set to a value which is numerically equal (except for any rounding) to the
lhs, rescaled so that it has the requested exponent. To achieve this, the coefficient of the
number is adjusted (by rounding or shifting) so that its exponent has the value of the rhs.
For example, if the lhs had the value 123.4567, and decNumberRescale was used to set
its exponent to –2, the result would be 123.46 (that is, 12346 with an exponent of –2).

Note that the rhs may be positive, which will lead to the number being adjusted so that it
is a multiple of the specified power of ten.

If adjusting the scale would mean that more than context.digits would be needed in
the coefficient, then the DEC_Invalid_operation condition is raised. This guarantees that
in the absence of error the exponent of number is always equal to the rhs.

decNumberRotate(number, lhs, rhs, context)
This function is used to rotate the digits in the coefficient of a number as though its
coefficient had the length given by context.digits and its most-significant digit were
connected to its least-significant digit.

The number is set to a copy of lhs with the digits of its coefficient rotated to the left (if rhs
is positive) or to the right (if rhs is negative) without adjusting the exponent or the sign.
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If lhs has fewer digits than context.digits the coefficient is padded with zeros on the
left before the rotate. Any insignificant leading zeros in the result are removed, as usual.

rhs is the count of digits to rotate; it must be an integer (that is, it must have an exponent
of 0) and must be in the range –context.digits through +context.digits.

decNumberSameQuantum(number, lhs, rhs)

This function is used to test whether the exponents of two numbers are equal. The
coefficients and signs of the operands (lhs and rhs) are ignored.

If the exponents of the operands are equal, or if they are both Infinities or they are both
NaNs, number is set to 1. In all other cases, number is set to 0. No error is possible.

decNumberScaleB(number, lhs, rhs, context)

This function is used to adjust (scale) the exponent of a number, using the rules of the
“scaleB” operation in IEEE 754. The number is set to the result of multiplying lhs by ten
raised to the power of rhs. rhs must be an integer (that is, it must have an exponent of 0)
and it must also be in the range –n through +n, where n is
2 × (context.emax+context.digits).

decNumberShift(number, lhs, rhs, context)

This function is used to shift the digits in the coefficient of a number. The number is set
to a copy of lhs with the digits of its coefficient shifted to the left (if rhs is positive) or to
the right (if rhs is negative) without adjusting the exponent or the sign. The coefficient
is padded with zeros on the left or right, as necessary. Any leading zeros in the result
are ignored, as usual.

rhs is the count of digits to shift; it must be an integer (that is, it must have an exponent
of 0) and must be in the range –context.digits through +context.digits.

decNumberSquareRoot(number, rhs, context)

The number is set to the square root of the rhs, rounded if necessary using the digits set-
ting in the context and using the round–half–even rounding algorithm. The preferred
exponent of the result is floor(exponent/2).

decNumberSubtract(number, lhs, rhs, context)

The number is set to the result of subtracting the rhs from the lhs.

decNumberToIntegralExact(number, rhs, context)

The number is set to the rhs, with any fractional part removed if necessary using the
rounding mode in the context.

The Inexact flag is set if the result is numerically different from rhs. Other than that,
no flags are set (unless the operand is a signaling NaN). The result may have a positive
exponent.
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decNumberToIntegralValue(number, rhs, context)
The number is set to the rhs, with any fractional part removed if necessary using the
rounding mode in the context.

No flags, not even Inexact, are set (unless the operand is a signaling NaN). The result
may have a positive exponent.

decNumberXor(number, lhs, rhs, context)
The number is set to the result of the digit-wise logical exclusive or of lhs and rhs.

Utility functions

The utility functions include copying, trimming, test, and initializing functions, along
with specialized conversions and a function for determining the version of the decNumber
package.

decNumberClass(number, context)
This function is used to determine the class of a decNumber. The arguments are:

number (decNumber *) Pointer to the decNumber to be classified.

context (decContext *) Pointer to the context (the value of emin is used to determine
if a finite number is normal or subnormal).

Returns an enum decClass (defined in decNumber.h), which can be converted to a char-
acter string using decNumberClassToString. No error is possible from this function.

decNumberClassToString(number, context)
This function is used to convert a decClass enumeration to a string. The argument is:

class (enum decClass) The enumeration to be converted.

Returns a string (const char *) which points to one of the constant strings "sNaN",
"NaN", "–Infinity", "–Normal", "–Subnormal", "–Zero", "+Zero", "+Subnormal",
"+Normal", "+Infinity", or "Invalid". No error is possible from this function.

decNumberCopy(number, source)
This function is used to copy the content of one decNumber structure to another. It is
used when the structures may be of different sizes and hence a straightforward structure
copy by C assignment is inappropriate. It also may have performance benefits when the
number is short relative to the size of the structure, as only the units containing the
digits in use in the source structure are copied.

The arguments are:

number (decNumber *) Pointer to the structure to receive the copy. It must have space
for source–>digits digits.

source (decNumber *) Pointer to the structure which will be copied to number. All
fields are copied, with the units containing the source–>digits digits being
copied starting from lsu. The source structure is unchanged.
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Returns number. No error is possible from this function.

decNumberCopyAbs(number, source)
This function is used to copy the absolute value of the content of one decNumber struc-
ture to another. It is identical to decNumberCopy except that the sign of the result is
always 0. This is equivalent to the quiet abs function described in IEEE 754.

Returns number. No error is possible from this function.

decNumberCopyNegate(number, source)
This function is used to copy the value of the content of one decNumber structure to
another while inverting its sign. It is identical to decNumberCopy except that the sign
of the result is the inverse of that in source. This is equivalent to the quiet negate function
described in IEEE 754.

Returns number. No error is possible from this function.

decNumberCopySign(number, source, pattern)
This function is used to copy the value of the content of one decNumber structure to
another and changing its sign to that of a third. It is identical to decNumberCopy except
that the sign of the result is taken from the third argument instead of from source. This
is equivalent to the quiet copysign function described in IEEE 754.

The first two arguments are as for decNumberCopy. The third is:

pattern (decNumber *) Pointer to the structure which provides the sign.

Returns number. No error is possible from this function.

decNumberFromInt32(number, i)
This function is used to convert a signed (two’s complement) 32-bit binary integer to a
decNumber. The arguments are:

number (decNumber *) Pointer to the structure that will received the converted inte-
ger. This must have space for the digits needed to represent the value of i,
which may need up to ten digits.

i (int32_t) The integer to be converted.

Returns number. No error is possible from this function.

decNumberFromUInt32(number, u)
This function is used to convert an unsigned 32-bit binary integer to a decNumber. The
arguments are:

number (decNumber *) Pointer to the structure that will received the converted inte-
ger. This must have space for the digits needed to represent the value of u,
which may need up to ten digits.

u (uint32_t) The integer to be converted.

Returns number. No error is possible from this function.
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decNumberGetBCD(number, bcd)
This function is used to convert the coefficient of a decNumber to Binary Coded Decimal,
one digit (value 0–9) per byte. The arguments are:

number (decNumber *) Pointer to the structure containing the coefficient to be con-
verted.

bcd (uint8_t *) Pointer to the byte array which will receive the converted coef-
ficient; the most significant digit of the coefficient will be placed in bcd[0].
The first number–>digits elements of bcd will have their values set; no other
elements are affected.

Returns bcd. No error is possible from this function.

decNumberIsCanonical(number)
This function is used to test whether the encoding of a decNumber is canonical.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) always, because decNumbers always have canonical encodings (the
function is provided for compatibility with the IEEE 754 operation isCanonical). This
function may be implemented as a macro; no error is possible.

decNumberIsFinite(number)
This function is used to test whether a number is finite.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is finite, or 0 (false) otherwise (that is, it is an infinity or
a NaN). This function may be implemented as a macro; no error is possible.

decNumberIsInfinite(number)
This function is used to test whether a number is infinite.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is infinite, or 0 (false) otherwise (that is, it is a finite
number or a NaN). This function may be implemented as a macro; no error is possible.

decNumberIsNaN(number)
This function is used to test whether a number is a NaN (quiet or signaling).

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a NaN, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.
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decNumberIsNegative(number)
This function is used to test whether a number is negative (either minus zero, less than
zero, or a NaN with a sign of 1).

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is negative, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

decNumberIsNormal(number)
This function is used to test whether a number is normal (that is, finite, non-zero, and
not subnormal).

The arguments are:

number (decNumber *) Pointer to the structure whose value is to be tested.

context (decContext *) Pointer to the context (the value of emin is used to determine
if a finite number is normal or subnormal).

Returns 1 (true) if the number is normal, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

decNumberIsQNaN(number)
This function is used to test whether a number is a Quiet NaN.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a Quiet NaN, or 0 (false) otherwise. This function may
be implemented as a macro; no error is possible.

decNumberIsSNaN(number)
This function is used to test whether a number is a Signaling NaN.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a Signaling NaN, or 0 (false) otherwise. This function
may be implemented as a macro; no error is possible.

decNumberIsSpecial(number)
This function is used to test whether a number has a special value (Infinity or NaN); it
is the inversion of decNumberIsFinite (see page 39).

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is special, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.
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decNumberIsSubnormal(number)
This function is used to test whether a number is subnormal (that is, finite, non-zero, and
magnitude less than 10emin).

The arguments are:

number (decNumber *) Pointer to the structure whose value is to be tested.

context (decContext *) Pointer to the context (the value of emin is used to determine
if a finite number is normal or subnormal).

Returns 1 (true) if the number is subnormal, or 0 (false) otherwise. This function may
be implemented as a macro; no error is possible.

decNumberIsZero(number)
This function is used to test whether a number is a zero (either positive or negative).

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is zero, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

decNumberRadix()
This function returns the radix (number base) used by the decNumber package. This
always returns 10. This function may be implemented as a macro; no error is possible.

decNumberReduce(number, rhs, context)
This function has the same effect as decNumberPlus except that the final result is set to
its simplest (shortest) form without changing its value. That is, a non-zero number which
has any trailing zeros in the coefficient has those zeros removed by dividing the coeffi-
cient by the appropriate power of ten and adjusting the exponent accordingly, and a zero
has its exponent set to 0.

The decNumberTrim function (see page 42) can be used to remove only fractional trailing
zeros.

This function was previously called decNumberNormalize (and is still available under that
name for compatibility).

decNumberSetBCD(number, bcd, n)
This function is used to set the coefficient of a decNumber from a Binary Coded Decimal
array which has one digit (value 0–9) per byte. The arguments are:

number (decNumber *) Pointer to the structure whose coefficient is to be set.

bcd (uint8_t *) Pointer to the byte array which provides the coefficient; the most
significant digit of the coefficient is at bcd[0] and the least significant is at
bcd[n–1].

n (uint32_t *) Count of the BCD digits to be converted.
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number must have space for at least n digits. If number is a NaN, or is Infinite, or is to
become a zero, n must be 1 and bcd[0] must be zero.

Returns number. No error is possible from this function.

decNumberToInt32(number, context)

This function is used to convert a decNumber to a signed (two’s complement) 32-bit
binary integer. The arguments are:

number (decNumber *) Pointer to the structure that will have its value converted.

context (decContext *) Pointer to the context (used only for reporting an error).

The DEC_Invalid_operation condition is raised if number does not have an exponent of
0, or if it is a NaN or Infinity, or if it is out-of-range (cannot be represented). In this case
the result is 0. Note that a –0 is not out of range (it is numerically equal to zero and will
be converted without raising the condition).

Returns the signed integer (int32_t).

decNumberToUInt32(number, context)

This function is used to convert a decNumber to an unsigned 32-bit binary integer. The
arguments are:

number (decNumber *) Pointer to the structure that will have its value converted.

context (decContext *) Pointer to the context (used only for reporting an error).

The DEC_Invalid_operation condition is raised if number does not have an exponent of
0, or if it is a NaN or Infinity, or if it is out-of-range (cannot be represented). In this case
the result is 0. Note that a –0 is not out of range (but all values less than zero are).

Returns the unsigned integer (uint32_t).

decNumberTrim(number)

This function is used to remove insignificant trailing zeros from a number, uncoditionally.
That is, if the number has any fractional trailing zeros they are removed by dividing the
coefficient by the appropriate power of ten and adjusting the exponent accordingly. The
decNumberReduce function (see page 41) can be used to remove all trailing zeros.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be trimmed.

Returns number. No error is possible from this function.
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decNumberVersion()
This function returns a pointer (char *) to a human-readable description of the version
of the decNumber package being run. The string pointed to will have at most 16 charac-
ters and will be a constant, and will comprise two words (the name and a decimal number
identifying the version) separated by a blank. For example:

decNumber 3.40

No error is possible from this function.

decNumberZero(number)
This function is used to set the value of a decNumber structure to zero.

The argument is:

number (decNumber *) Pointer to the structure to be set to 0. It must have space for
one digit.

Returns number. No error is possible from this function.
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decimal32, decimal64, and decimal128
modules

The decimal32, decimal64, and decimal128 modules define the data structures and con-
version functions for the IEEE 754 decimal-encoded compressed decimal formats which
are 32, 64, or 128 bits (4, 8, or 16 bytes) long, respectively. These provide up to 7, 16,
or 34 digits of decimal precision in a compact and machine-independent form.

These modules provide the interface between the compressed numbers and the
decNumber internal format (and also provide string conversions). The decFloats modules
(see page 48) provide arithmetic and other functions which work on data in the same
formats directly. Example 7 and Example 8 in the User’s Guide (see page 14) show how
to work with data in the formats with or without using the decNumber module.

Apart from the different lengths and ranges of the numbers, these three modules are
identical, so this section just describes the decimal64 module. The definitions and func-
tions for the other two formats are the same, except for the obvious name and value
changes.

In this implementation each format is represented as an array of unsigned bytes. There
is therefore just one field in the decimal64 structure:

bytes The bytes field represents the eight bytes of a decimal64 number, using
Densely Packed Decimal encoding for the coefficient.12

The storage of a number in the bytes array is assumed to follow the byte ordering
(“endianness”) of the computing platform (if big-endian, then bytes[0] contains the sign
bit of the format). The code in these modules requires that the DECLITEND tuning
parameter (see page 67) be set to match the endianness of the platform.

Note that the equivalent structures in the decFloats modules are identical except for their
names. It is therefore safe to cast pointers between them if they are the same size (for
example between decimal64 and decDouble). This means that these modules can be used
as proxies between the decNumber module and the decFloats modules.

The decimal64 module includes private functions for coding and decoding Densely Packed
Decimal data; these functions are shared by the other compressed format modules.
Hence, when using any of these three then decimal64.c must be compiled too.

Definitions

The decimal64.h header file defines the decimal64 data structure described above. It
includes the decNumber.h header file, to simplify use, and (if not already defined) it sets
the DECNUMDIGITS constant to 16, so that any declared decNumber will be the right size
to contain any decimal64 number.

12 See http://www2.hursley.ibm.com/decimal/DPDecimal.html for a summary of Densely
Packed Decimal encoding; note that this URL may change – please use a search for the document if nec-
essary.
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If more than one of the three decimal format header files are used in a program, they
must be included in decreasing order of size so that the largest value of DECNUMDIGITS
will be used.

The decimal64.h header file also contains:

• Constants defining aspects of decimal64 numbers, including the maximum precision,
the minimum and maximum (adjusted) exponent supported, the bias applied to the
exponent, the length of the number in bytes, and the maximum number of characters
in the string form of the number (including terminator)

• Definitions of the public functions in the decimal64 module.

The decimal64 module also contains the shared routines for compressing and expanding
Densely Packed Decimal data, and uses the decDPD.h header file. The latter contains
look-up tables which are used for encoding and decoding Densely Packed Decimal data
(only three of of the tables in the header file are used). These tables are automatically
generated and should not need altering.

Functions

The decimal64.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings and decNumbers, and some utilities.

When a decContext structure is used to report errors, the same rules are followed as for
other modules. That is, a trap may be raised, etc.

decimal64FromString(decimal64, string, context)
This function is used to convert a character string to decimal64 format. It implements
the to–number conversion in the arithmetic specification (that is, it accepts subnormal
numbers, NaNs, and infinities, and it preserves the sign and exponent of 0). If neces-
sary, the value will be rounded to fit.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be set from the character string.

string (char *) Pointer to the input character string. This must be a valid numeric
string, as defined in the specification. The string will not be altered.

context (decContext *) Pointer to the context structure which controls the conver-
sion, as for the decNumberFromString function (see page 28) except that the
precision and exponent range are fixed for each format (the values of emax,
emin, and digits are ignored).

Returns decimal64.

Possible errors are DEC_Conversion_syntax (the string does not have the syntax of a
number), DEC_Overflow (the adjusted exponent of the number is positive and is greater
than emax for the format), or DEC_Underflow (the adjusted exponent of the number is
negative and is less than emin for the format and the conversion is not exact). If one of
these conditions is set, the decimal64 structure will have the value NaN, ±Infinity or the
largest possible finite number, or a finite (possibly subnormal) number respectively, with
the same sign as the converted number after overflow or underflow.
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decimal64ToString(decimal64, string)
This function is used to convert a decimal64 number to a character string, using scientific
notation if an exponent is needed (that is, there will be just one digit before any decimal
point). It implements the to–scientific–string conversion in the arithmetic specification.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be converted to a string.

string (char *) Pointer to the character string buffer which will receive the con-
verted number. It must be at least DECIMAL64_String (24) characters long.

Returns string; no error is possible from this function.

decimal64ToEngString(decimal64, string)
This function is used to convert a decimal64 number to a character string, using engi-
neering notation (where the exponent will be a multiple of three, and there may be up
to three digits before any decimal point) if an exponent is needed. It implements the
to–engineering–string conversion in the arithmetic specification.

The arguments and result are the same as for the decimal64ToString function, and sim-
ilarly no error is possible from this function.

decimal64FromNumber(decimal64, number, context)
This function is used to convert a decNumber to decimal64 format.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be set from the decNumber. This
may receive a numeric value (including subnormal values and –0) or a special
value.

number (decNumber *) Pointer to the input structure. The decNumber structure will
not be altered.

context (decContext *) Pointer to a context structure whose status field is used to
report any error and whose other fields are used to control rounding, etc., as
required.

Returns decimal64.

The possible errors are as for the decimal64FromString function (see page 45), except
that DEC_Conversion_syntax is not possible.

decimal64ToNumber(decimal64, number)
This function is used to convert a decimal64 number to decNumber form in preparation
for arithmetic or other operations.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be converted to a decNumber. The
decimal64 structure will not be altered.

number (decNumber *) Pointer to the result structure. It must have space for 16 digits
of precision.
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Returns number; no error is possible from this function.

decimal64Canonical(decimal64, source)
This function is used to ensure that a decimal64 number is encoded with the canonical
form. That is, all declets use the preferred 1000 encodings and an infinity has a coeffi-
cient of zero.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to receive a copy of source, with
canonical encoding.

source (decimal64 *) Pointer to the structure to be converted to a canonical encod-
ing.

Returns decimal64; no error is possible from this function.

decimal64IsCanonical(decimal64)
This function is used to test whether a decimal64 number is encoded with the canonical
form. That is, that all declets use the preferred 1000 encodings and an infinity has a
coefficient of zero.

The argument is:

decimal64 (decimal64 *) Pointer to the structure to be tested.

Returns an unsigned integer (uint32_t *) which is 1 if decimal64 has canonical encoding,
or 0 otherwise. No error is possible from this function.
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decFloats modules

The decFloats modules are decSingle, decDouble, and decQuad. These are based on the
32-bit, 64-bit, and 128-bit decimal types in the IEEE 754 Standard for Floating Point
Arithmetic.

In contrast to the arbitrary-precision decNumber module, these modules work directly
from the decimal-encoded formats designed by the IEEE 754 committee, which are also
now implemented in IBM System z (z9 and z10) and IBM System p (POWER6) process-
ors, and in SAP NetWeaver 7.1.13

Conversions to and from the decNumber internal format are not needed (typically the
numbers are represented internally in “unpacked” BCD or in a base of some other power
of ten), and no memory allocation is necessary, so these modules are much faster than
using decNumber for implementing the types.

Like the decNumber module, the decFloats modules

• need only 32-bit integer support; 64-bit integers are not required and binary
floating-point is not used

• support both big-endian and little-endian encodings and platforms

• support both ASCII/UTF8 and EBCDIC strings

• are reentrant and use only aligned integers and strict aliasing

• use only ANSI C.

The modules should therefore be usable on any platform with an ANSI C compiler that
supports 32-bit integers.

The decFloats modules define the data structures and a large set of functions for working
directly with the same compressed formats as decimal32, decimal64, and decimal128.
The names are different to allow them to be used stand-alone or with the decNumber
module, as illustrated in Examples 7 and 8 in the User’s Guide (see page 14).

These three modules all share many of the same functions (working on the different sizes
of the formats). The decQuad module has all the same functions as decDouble except for
two functions which would convert to or from a wider format. The decSingle module is
a limited (“storage”) format which has a only a few conversion and miscellaneous func-
tions; it is intended that any computation be carried out in a wider format.

The remainder of this section therefore describes only the decDouble format – in the list
of functions, assume that there is a corresponding decQuad format function unless stated
and assume there is not a corresponding decSingle format function unless stated.

In this implementation each format is represented as an array of unsigned bytes. There
is therefore just one field in the decDouble structure:

13 IBM, the IBM logo, System p, System z, and POWER6 are trademarks of International Business
Machines Corporation in the United States, other countries, or both. SAP and SAP NetWeaver are
trademarks of SAP AG, in Germany, other countries, or both.
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bytes The bytes field represents the eight bytes of a decDouble number, using
Densely Packed Decimal encoding for the coefficient. As of decNumber 3.56
the structure has been changed to a union of the bytes array with arrays of
larger integers; see the header file for each type for details.14

The storage of a number in the bytes array is assumed to follow the byte ordering
(“endianness”) of the computing platform (if big-endian, then bytes[0] contains the sign
bit of the format). The code in these modules requires that the DECLITEND tuning
parameter (see page 67) be set to match the endianness of the platform.

The decSingle and decDouble modules both require that the next wider format be
included in a program compilation (so that conversion to and from that wider format can
be effected), hence the decQuad module is always needed.15 It, therefore, contains the
constant lookup tables from the the decDPD.h header file which are shared by all three
modules. These tables are automatically generated and should not need altering.

Most of the code for these modules is included from the shared source files decCommon.c
and decBasic.c. The former contains the functions available in all three modules16 and
the latter the functions available only in decDouble and decQuad.

Definitions

The decDouble.h header file defines the decDouble data structure described above. It
includes the decContext.h and and decQuad.h header files, which are both required for
use.17 If more than one of the three decFloats formats are used in a program, it is only
necessary to include the smaller or smallest.

The decDouble.h header file also contains:

• Constants defining aspects of decDouble numbers, including the maximum precision,
the minimum and maximum (adjusted) exponent supported, the bias applied to the
exponent, the length of the number in bytes, and the maximum number of characters
in the string form of the number (including terminator)

• Definitions of the public functions in the decDouble module

• Macros defining conversions to and from the decNumber format. These are macros
in order to avoid a compile-time dependency on the decNumber module; they use
decimal64 as a proxy, and their usage is shown in Example 8 in the User’s Guide
(see page 15).

14 See http://www2.hursley.ibm.com/decimal/DPDecimal.html for a summary of Densely
Packed Decimal encoding; note that this URL may change – please use a search for the document if nec-
essary.

15 This requirement is different from the decimal32, decimal64, and decimal128 modules because they can
convert to wider or narrower formats using the decNumber format as an intermediate step.

16 Except that the widening and narrowing functions are not used by decQuad.
17 The decSingle.h header file also includes decDouble.h, but the decQuad.h header file only

includes decContext.h.
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Functions

The decDouble.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings and other formats, arithmetic and logical
operations, and utilities.

The functions are described briefly, below. More details of the operation of each function
can be found in the description of the corresponding function in the decNumber module
and details of the underlying model and arithmetic can be found in the General Decimal
Arithmetic Specification.18

In the descriptions below, many parameters are defined as one of the following:

x, y, z (const decDouble *) decimal input arguments to a function

r (decDouble *) a decimal result argument to a function (which may be the
same as an input argument); unless stated otherwise this is also the return
value from the function, and the result will be canonical

set (decContext *) the context for a function. Only two fields of the context
structure are used: round (the rounding mode) and status (the bits in which are
used to indicate any error, etc.).

Note that the trap field in the context is not used; the decDouble functions do not check
for traps after every operation to avoid the overhead that would incur. The
decContextSetStatus function (see page 22) can be used to explicitly test status to trap.

Note also that the only informational flag set by decNumber is DEC_Inexact; the others
are never set by the decFloats module in order to improve performance and also to avoid
the need for passing a context to many functions.19

In the following list, every function has corresponding decQuad format function (for
example, decQuadAbs(r, x, set)) unless stated, and does not have a corresponding
decSingle format function unless stated.

decDoubleAbs(r, x, set)

Returns the absolute value of x. This has the same effect as decDoublePlus unless x is
negative, in which case it has the same effect as decDoubleMinus. The effect is also the
same as decDoubleCopyAbs except that NaNs are handled normally (the sign of a NaN
is not affected, and an sNaN will set DEC_Invalid_operation) and the result will be
canonical.

decDoubleAdd(r, x, y, set)

Adds x and y and places the result in r.

18 See http://www2.hursley.ibm.com/decimal/#arithmetic for details; note that this URL
may change – please use a search for the document if necessary.

19 The DEC_Subnormal flag is particularly expensive to maintain.
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decDoubleAnd(r, x, y, set)

Carries out the digit-wise logical And of x and y and places the result in r.

The operands must be zero or positive (sign=0), an integer (finite with exponent=0) and
comprise only zeros and/or ones; if not, DEC_Invalid_operation is set.

decDoubleCanonical(r, x)

This copies x to r, ensuring that the encoding of r is canonical.

decDoubleClass(x)

This returns the class (enum decClass) of the argument x.

decDoubleClassString(x)

This returns a description of the class of the argument x as a string (const char *).

decDoubleCompare(r, x, y, set)

Compares x and y numerically and places the result in r.

The result may be –1, 0, 1, or NaN (unordered); –1 indicates that x is less than y, 0
indicates that they are numerically equal, and 1 indicates that x is greater than y. NaN
is returned only if x or y is a NaN.

decDoubleCompareSignal(r, x, y, set)

The same as decDoubleCompare, except that a quiet NaN argument is treated like a
signaling NaN (causes DEC_Invalid_operation to be set).

decDoubleCompareTotal(r, x, y)

Compares x and y using the IEEE 754 total ordering (which takes into account the
exponent) and places the result in r. No status is set (a signaling NaN is ordered between
Infinity and NaN). The result will be –1, 0, or 1.

decDoubleCompareTotalMag(r, x, y)

The same as decDoubleCompareTotal except that the absolute values of the two argu-
ments are used (as though modified by decDoubleCopyAbs).

decDoubleCopy(r, x)

Copies x to r quietly (no status is set). This is a bit-wise operation and so the result might
not be canonical.

decDoubleCopyAbs(r, x)

Copies x to r quietly and sets the sign of r to 0 (no status is set). This is a bit-wise
operation and so the result might not be canonical.
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decDoubleCopyNegate(r, x)

Copies x to r quietly and inverts the sign of r (no status is set). This is a bit-wise oper-
ation and so the result might not be canonical.

decDoubleCopySign(r, x, y)

Copies x to r quietly with the sign of r set to the sign of y (no status is set). This is a
bit-wise operation and so the result might not be canonical.

decDoubleDigits(x)

Returns the number of significant digits in x as an unsigned 32-bit integer (uint32_t).
If x is a zero or is infinite, 1 is returned. If x is a NaN then the number of digits in the
payload is returned.

decDoubleDivide(r, x, y, set)

Divides x by y and places the result in r.

decDoubleDivideInteger(r, x, y, set)

Divides x by y and places the integer part of the result (rounded towards zero) in r with
exponent=0. If the result would not fit in r (because it would have more than
DECDOUBLE_Pmax digits) then DEC_Division_impossible is set.

decDoubleFMA(r, x, y, z, set)

Calculates the fused multiply-add x × y + z and places the result in r. The multiply is
carried out first and is exact, so this operation has only the one, final, rounding.

decDoubleFromBCD(r, exp, bcd, sign)

Sets r from an exponent exp (which may indicate a NaN or infinity), a BCD array bcd,
and a sign.

exp (int32_t) is an in-range unbiased exponent or a special value in the form returned
by decDoubleGetExponent (listed in decQuad.h).

bcd (const uint8_t *) is an array of DECDOUBLE_Pmax elements, one digit in each byte
(BCD8 encoding); the first (most significant) digit is ignored if the result will be a NaN;
all are ignored if the result is infinite. All bytes must be in the range 0–9.

sign (int32_t) is an integer which must be DECFLOAT_Sign to set the sign bit of r to 1,
or 0 to set it to 0.

For speed, the arguments are not checked; no status is set by this function. The content
of r is undefined if the arguments are invalid or out of range (that is, could not be
produced by decDoubleToBCD).

(This function is also available in the decSingle module.)
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decDoubleFromInt32(r, i)
Sets r from the signed 32-bit integer i (int32_t). The result is exact; no error is possible.

decDoubleFromNumber(r, dn, set)
This function is implemented as a macro and sets r from a decNumber, dn, using a
decimal64 as a proxy as illustrated in Example 8 in the User’s Guide (see page 15).

To use this macro, the decimal64.h header file must be included (see the text following
the example for more details about compilation).

(This function is also available in the decSingle module.)

decDoubleFromPacked(r, exp, pack)
Sets r from an exponent exp (which may indicate a special value) and a packed BCD
array, pack.

exp (int32_t) is an in-range unbiased exponent or a special value in the form returned
by decDoubleGetExponent (listed in decQuad.h).

pack (const uint8_t *) is an array of DECDOUBLE_Pmax packed decimal digits (one digit
per four-bit nibble) followed by a sign nibble, and (for decDouble and decQuad only) pre-
fixed with an extra pad nibble (which is ignored); the sign nibble must be any of the six
sign codes listed in decQuad.h and described for the decPacked module (see page 63), and
digit nibbles must be in the range 0–9.

Like the decDoubleFromBCD function, the first nibble of pack (after the pad nibble, if
any) is ignored if the result will be a NaN, and all are ignored if the result is infinite.

For speed, the arguments are not checked; no status is set by this function. The content
of r is undefined if the arguments are invalid or out of range (that is, could not be
produced by decNumberToPacked, except that all six sign codes are permitted).

(This function is also available in the decSingle module.)

decDoubleFromPackedChecked(r, exp, pack)
Sets r from an exponent exp (which may indicate a special value) and a packed BCD
array, pack, with the input values fully checked.

exp (int32_t) must be an in-range unbiased exponent or a special value in the form
returned by decDoubleGetExponent (listed in decQuad.h).

pack (const uint8_t *) is an array of DECDOUBLE_Pmax packed decimal digits (one digit
per four-bit nibble) followed by a sign nibble, and (for decDouble and decQuad only) pre-
fixed with an extra pad nibble (which must be zero); the sign nibble must be one of the
six sign codes listed in decQuad.h and described for the decPacked module (see page
63), and digit nibbles must be in the range 0–9.

The first nibble of pack (after the pad nibble, if any) must be zero if the result will be a
NaN, and all digit nibbles must be zero if the result is infinite.

No status is set by this function. NULL is returned instead of r if an argument is invalid
or out of range (that is, could not be produced by decNumberToPacked, except that all
six sign codes are permitted).

(This function is also available in the decSingle module.)
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decDoubleFromString(r, string, set)

Sets r from a character string, string (const char *).

The length of the coefficient and the size of the exponent are checked by this routine, so
rounding will be applied if necessary, and this may set status flags (underflow, overflow)
will be reported, or rounding applied, as necessary.

There is no limit to the coefficient length for finite inputs; NaN payloads must be integers
with no more than DECDOUBLE_Pmax–1 digits. Exponents may have up to nine significant
digits. The syntax of the string is fully checked; if it is not valid, the result will be a quiet
NaN and an error flag will be set.

(This function is also available in the decSingle module.)

decDoubleFromUInt32(r, u)

Sets r from the unsigned 32-bit integer u (uint32_t). The result is exact and no error is
possible.

decDoubleFromWider(r, dq, set)

Sets r from an instance, dq, of the next-wider format (const decQuad *). This narrowing
function can cause rounding, overflow, etc., but not Invalid operation (sNaNs are copied
and do not signal).

(This function is also available in the decSingle module, but is not available in the
decQuad module.)

decDoubleGetCoefficient(x, bcd)

Extracts the coefficient of x as a BCD integer into the array bcd (uint8_t *) and returns
the sign as a signed 32-bit integer (int32_t). The returned value will be DECFLOAT_Sign
if x has sign=1 or otherwise will be 0.

The digits of the coefficent are written, one digit per byte, into DECDOUBLE_Pmax elements
of the bcd array. If x is a NaN the first byte will be zero (the remainder will be the
payload), and if it is infinite then all of bcd will be zero.

(This function is also available in the decSingle module.)

decDoubleGetExponent(x)

Returns the exponent of x as a 32-bit integer (int32_t). If x is infinite or is a NaN (a
special value) the first seven bits of the decDouble are returned, padded with 25 zero bits
on the right and with the most significant (sign) bit set to 0. For example, –sNaN would
return 0x7e000000 (DECFLOAT_sNaN). The possible return values for infinities and NaNs
are listed in decQuad.h.

(This function is also available in the decSingle module.)

decDoubleInvert(r, x, set)

Carries out the digit-wise logical inversion of x and places the result in r.
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The operand must be zero or positive (sign=0), an integer (finite with exponent=0) and
comprise only zeros and/or ones; if not, DEC_Invalid_operation is set.

decDoubleIsCanonical(x)

Returns an unsigned integer (uint32_t) which will be 1 if the encoding of x is canonical,
or 0 otherwise.

decDoubleIsFinite(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is neither infinite nor a NaN,
or 0 otherwise.

decDoubleIsInfinite(x)

Returns an unsigned integer (uint32_t) which will be 1 if the encoding of x is an infinity,
or 0 otherwise.

decDoubleIsInteger(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is finite and has exponent=0,
or 0 otherwise.

decDoubleIsNaN(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a NaN (quiet or signaling),
or 0 otherwise.

decDoubleIsNormal(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a normal number (that is,
is finite, non-zero, and not subnormal), or 0 otherwise.

decDoubleIsSignaling(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a signaling NaN, or 0
otherwise.

decDoubleIsSignalling(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a signaling NaN, or 0
otherwise. (This is an alternative spelling of decDoubleIsSignaling.)

decDoubleIsSigned(x)

Returns an unsigned integer (uint32_t) which will be 1 if x has sign=1, or 0 otherwise.

decDoubleIsSubnormal(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is subnormal (that is, finite,
non-zero, and with magnitude less than 10emin), or 0 otherwise.
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decDoubleIsZero(x)
Returns an unsigned integer (uint32_t) which will be 1 if x is a zero, or 0 otherwise.

decDoubleLogB(r, x, set)
Returns the adjusted exponent of x, according to IEEE 754 rules. That is, the exponent
returned is calculated as if the decimal point followed the first significant digit (so, for
example, if x were 123 then the result would be 2).

If x is infinite, the result is +Infinity. If x is a zero, the result is –Infinity, and the
DEC_Division_by_zero flag is set. If x is less than zero, the absolute value of x is used.
If x=1, the result is 0. NaNs are handled (propagated) as for arithmetic operations.

decDoubleMax(r, x, y, set)
If both arguments are numeric (not NaNs) this returns the larger of x and y (compared
using decDoubleCompareTotal, to give a well-defined result).

If either (but not both of) x or y is a quiet NaN then the other argument is the result;
otherwise NaNs are handled as for arithmetic operations.

decDoubleMaxMag(r, x, y, set)
The same as decDoubleMax except that the absolute values of the two arguments are
used (as though modified by decDoubleCopyAbs).

decDoubleMin(r, x, y, set)
If both arguments are numeric (not NaNs) this returns the smaller of x and y (compared
using decDoubleCompareTotal, to give a well-defined result).

If either (but not both of) x or y is a quiet NaN then the other argument is the result;
otherwise NaNs are handled as for arithmetic operations.

decDoubleMinMag(r, x, y, set)
The same as decDoubleMin except that the absolute values of the two arguments are
used (as though modified by decDoubleCopyAbs).

decDoubleMinus(r, x, set)
This has the same effect as 0–x where the exponent of the zero is the same as that of x
(if x is finite). The effect is also the same as decFloatCopyNegate except that NaNs are
handled as for arithmetic operations (the sign of a NaN is not affected, and an sNaN will
signal), the result is canonical, and a zero result has sign=0.

decDoubleMultiply(r, x, y, set)
Multiplies x by y and places the result in r.

decDoubleNextMinus(r, x, set)
Returns the “next” decDouble to x in the direction of –Infinity according to IEEE 754
rules for nextDown. The only status possible is DEC_Invalid_operation (from an sNaN).
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decDoubleNextPlus(r, x, set)
Returns the “next” decDouble to x in the direction of +Infinity according to IEEE 754
rules for nextUp. The only status possible is DEC_Invalid_operation (from an sNaN).

decDoubleNextToward(r, x, y, set)
Returns the “next” decDouble to x in the direction of y according to proposed IEEE 754
rules for nextAfter.20

If x=y the result is decDoubleCopySign(r, x, y). If either operand is a NaN the result is
as for arithmetic operations. Otherwise (the operands are numeric and different) the
result of adding (or subtracting) an infinitesimal positive amount to x and rounding
towards +Infinity (or –Infinity) is returned, depending on whether y is larger (or smaller)
than x. The addition will set flags, except that if the result is normal (finite, non-zero,
and not subnormal) no flags are set.

decDoubleOr(r, x, y, set)

Carries out the digit-wise logical inclusive Or of x and y and places the result in r.

The operands must be zero or positive (sign=0), an integer (finite with exponent=0) and
comprise only zeros and/or ones; if not, DEC_Invalid_operation is set.

decDoublePlus(r, x, set)
This has the same effect as 0+x where the exponent of the zero is the same as that of x
(if x is finite). The effect is also the same as decFloatCopy except that NaNs are handled
as for arithmetic operations (the sign of a NaN is not affected, and an sNaN will signal),
the result is canonical, and a zero result has sign=0.

decDoubleQuantize(r, x, y, set)
Returns x set to have the same quantum as y, if possible (that is, numerically the same
value but rounded or padded if necessary to have the same exponent as y, for example
to round a monetary quantity to cents). More details and an example are given with the
decNumberQuantize function (see page 34).

decDoubleRadix(x)
Returns an unsigned integer (uint32_t) set to the base used for arithmetic in this module
(always ten).

(This function is also available in the decSingle module.)

decDoubleReduce(r, x, set)
Returns a copy of x with its coefficient reduced to its shortest possible form without
changing the value of the result. This removes all possible trailing zeros from the coef-
ficient (some may remain when the number is very close to the most positive or most
negative number). Infinities and NaNs are unchanged and no status is set unless x is
an sNaN. If x is a zero the result exponent is 0.

20 The nextAfter operation was dropped from the proposed standard during the ballot process.
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decDoubleRemainder(r, x, y, set)

Integer-divides x by y and places the remainder from the division in r. That is, if the
same x and y were given to the decDoubleDivideInteger and decDoubleRemainder func-
tions, resulting in int and rem respectively, then the identity x = (int × y) + rem holds.

Note that, as for decDoubleDivideInteger, it must be possible to express the intermediate
result (int) as an integer. That is, it must have no more than DECDOUBLE_Pmax digits.
If it has too many then DEC_Division_impossible is raised.

decDoubleRemainderNear(r, x, y, set)

This is the same as decDoubleRemainder except that the nearest integer (or the nearest
even integer if the remainder is equidistant from two) is used for int instead of the result
from decDoubleDivideInteger. Again, that integer must fit.

decDoubleRotate(r, x, y, set)

The result is a copy of x with the digits of the coefficient rotated to the left (if y is positive)
or to the right (if y is negative) without adjusting the exponent or the sign of x.

y is the count of positions to rotate and must be a finite integer (with exponent=0) in the
range –DECDOUBLE_Pmax through +DECDOUBLE_Pmax. NaNs are propagated as usual. If
x is infinite the result is Infinity of the same sign. No status is set unless y is invalid or
an operand is an sNaN.

decDoubleSameQuantum(x, y)

Returns an unsigned integer (uint32_t) which will be 1 if the operands have the same
exponent or are both NaNs (quiet or signaling) or both infinite. In all other cases, 0 is
returned. No error or status is possible.

decDoubleScaleB(r, x, y, set)

This calculates x × 10y and places the result in r. y must be an integer (finite with
exponent=0) in the range ±2 × (DECDOUBLE_Pmax + DECDOUBLE_Emax), typically resulting
from decDoubleLogB. Underflow and overflow might occur. NaNs propagate as usual.

decDoubleSetCoefficient(r, bcd, sign)

Sets the coefficient of r from a BCD integer in the array bcd (uint8_t *) and the signed
32-bit integer (int32_t) sign. bcd must have DECDOUBLE_Pmax elements in the range
0–9, and sign must be DECFLOAT_Sign to set the sign bit of r to 1, or 0 to set it to 0.

If r is a NaN the first byte of bcd will be ignored (the remainder will be the payload), and
if it is infinite then all of bcd will be ignored (the coefficient will become zero).

For speed, the arguments are not checked; no status is set by this function. The result
is undefined if the arguments are invalid or out of range (that is, could not have been
produced by decDoubleGetCoefficient).

(This function is also available in the decSingle module.)

Version 3.61 Copyright (c) IBM Corporation 2008. All rights reserved. 58



decDoubleSetExponent(r, set, exp)

Sets the exponent of r from the signed 32-bit integer (int32_t) exp. exp is either an in-
range exponent or a special code as returned by decDoubleGetExponent. If r becomes
infinite then its coefficient is set to zero, if it becomes NaN then the first digit of the
coefficient is lost,21 otherwise the coefficient is unchanged.

For speed, exp is not checked; however, underflow or overflow can result. The result is
undefined if exp is not a value that could have been produced by decDoubleGetExponent.

(This function is also available in the decSingle module.)

decDoubleShift(r, x, y, set)

The result is a copy of x with the digits of the coefficient shifted to the left (if y is positive)
or to the right (if y is negative) without adjusting the exponent or the sign of x. Any digits
“shifted in” will be 0.

y is the count of positions to shift and must be a finite integer (with exponent=0) in the
range –DECDOUBLE_Pmax through +DECDOUBLE_Pmax. NaNs are propagated as usual. If
x is infinite the result is Infinity of the same sign. No status is set unless y is invalid or
an operand is an sNaN.

decDoubleShow(x, tag)

This function uses printf to display a readable rendering of x, showing both the encoding
(in hexadecimal) and the value, and returns nothing (void). The string tag (const char
*) is included in the display and may be used as an identifier for the displayed data.

This function is intended as a debug aid. It is not a programming interface – the format
of the displayed data may change from release to release.

(This function is also available in the decSingle module.)

decDoubleSubtract(r, x, y, set)

Subtracts y from x and places the result in r.

decDoubleToBCD(x, exp, bcd)

Converts x into an exponent exp (int32_t *) and a BCD array bcd (uint8_t *). exp is
set to the value that would be returned by decDoubleGetExponent(x), and bcd and the
returned integer (int32_t) are as from decDoubleGetCoefficient(x, bcd).

(This function is also available in the decSingle module.)

decDoubleToEngString(x, string)

The same as decDoubleToString(x, string) except that if exponential notation is used the
exponent will be a multiple of 3 (“engineering notation”).

(This function is also available in the decSingle module.)

21 A NaN payload has one fewer digit than the coefficient of a finite number.

Version 3.61 Copyright (c) IBM Corporation 2008. All rights reserved. 59



decDoubleToInt32(x, set, round)
Returns a signed 32-bit integer (int32_t) which is the value of x, rounded to an integer
if necessary using the explicit rounding mode round (enum rounding) instead of the
rounding mode in set.

If x is infinite, is a NaN, or after rounding is outside the range of the result, then
DEC_Invalid_operation is set. The DEC_Inexact flag is not set by this function, even if
rounding ocurred.

decDoubleToInt32Exact(x, set, round)
The same as decDoubleToInt32 except that if rounding removes non-zero digits then the
DEC_Inexact flag is set.

decDoubleToIntegralExact(r, x, set)
Returns the value of x, rounded to an integral value using the rounding mode in set.

If x is infinite, Infinity of the same sign is returned. If x is a NaN, the result is as for
other arithmetic operations. If rounding removes non-zero digits then the DEC_Inexact
flag is set.

decDoubleToIntegralValue(r, x, set, round)
Returns the value of x, rounded to an integral value using the explicit rounding mode
round (enum rounding) instead of the rounding mode in set.

If x is infinite, Infinity of the same sign is returned. If x is a NaN, the result is as for
other arithmetic operations. The DEC_Inexact flag is not set by this function, even if
rounding ocurred.

decDoubleToNumber(x, dn)
This function is implemented as a macro and sets a decNumber, dn, from x using a
decimal64 as a proxy as illustrated in Example 8 in the User’s Guide (see page 15). The
decNumber must have sufficient space for the digits in x.

To use this macro, the decimal64.h header file must be included (see the text following
the example for more details). A pointer to dn is returned (decNumber *).

(This function is also available in the decSingle module.)

decDoubleToPacked(x, exp, pack)
Converts x into an exponent exp (int32_t *) and a Packed BCD array pack (uint8_t
*). exp is set to the value that would be returned by decDoubleGetExponent(x).

pack receives DECDOUBLE_Pmax packed decimal digits (one digit per four-bit nibble) fol-
lowed by a sign nibble and prefixed (for decDouble and decQuad only) with an extra pad
nibble (which is 0). The sign nibble will be DECPMINUS if x has sign=1 or DECPPLUS oth-
erwise. The digit nibbles will be in the range 0–9.

A signed 32-bit integer (int32_t) is returned; it will be DECFLOAT_Sign if x has sign=1
or otherwise will be 0.

(This function is also available in the decSingle module.)
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decDoubleToString(x, string)

Converts x to a zero-terminated string in the character array string (char *) and returns
string. string must have at least DECDOUBLE_String elements (this count includes the
terminator character).

Finite numbers will be converted to a string with exponential notation if the exponent is
positive or if the magnitude of x is less than 1 and would require more than five zeros
between the decimal point and the first significant digit.

Note that strings which are not simply numbers (one of Infinity, –Infinity, NaN, or
sNaN) are possible. A NaN string may have a leading – sign and/or following payload
digits. No digits follow the NaN string if the payload is 0.

(This function is also available in the decSingle module.)

decDoubleToUInt32(x, set, enum rounding)

Returns an unsigned 32-bit integer (uint32_t) which is the value of x, rounded to an
integer if necessary using the explicit rounding mode round (enum rounding) instead of
the rounding mode in set.

If x is infinite, is a NaN, or after rounding is outside the range of the result, then
DEC_Invalid_operation is set. The DEC_Inexact flag is not set by this function, even if
rounding ocurred.

Note that –0 converts to 0 and is valid, but all negative numbers are not valid.

decDoubleToUInt32Exact(x, set, enum rounding)

The same as decDoubleToUInt32 except that if rounding removes non-zero digits then
the DEC_Inexact flag is set.

decDoubleToWider(x, dq)

Converts x into a structure, dq, of the next-wider format (decQuad *) and returns dq.
Widening is always exact; no status is set (sNaNs are copied and do not signal). The
result will be canonical if x is canonical, but otherwise might not be.

(This function is also available in the decSingle module, but is not available in the
decQuad module.)

decDoubleVersion(void)

Returns a pointer to a character string (const char *) which includes the name and the
version of the decNumber package.

(This function is also available in the decSingle module.)

decDoubleXor(r, x, y, set)

Carries out the digit-wise logical exclusive Or of x and y and places the result in r.

The operands must be zero or positive (sign=0), an integer (finite with exponent=0) and
comprise only zeros and/or ones; if not, DEC_Invalid_operation is set.
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decDoubleZero(r)
Sets r to the unsigned integer zero (that is, with the coefficient, the exponent, and the
sign all set to 0).

(This function is also available in the decSingle module.)
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decPacked module

The decPacked module provides conversions to and from Packed Decimal numbers.
Unlike the other modules, no specific decPacked data structure is defined because packed
decimal numbers are usually held as simple byte arrays, with a scale either being held
separately or implied.

Packed Decimal numbers are held as a sequence of Binary Coded Decimal digits, most
significant first (at the lowest offset into the byte array) and one per 4 bits (that is, each
digit taking a value of 0–9, and two digits per byte), with optional leading zero digits.
The final sequence of 4 bits (called a “nibble”) will have a value greater than nine which
is used to represent the sign of the number. The sign nibble may be any of the six pos-
sible values:

1010 (0x0a) plus

1011 (0x0b) minus

1100 (0x0c) plus (preferred)

1101 (0x0d) minus (preferred)

1110 (0x0e) plus

1111 (0x0f) plus22

Packed Decimal numbers therefore represent decimal integers. They often have associ-
ated with them a second integer, called a scale. The scale of a number is the number of
digits that follow the decimal point, and hence, for example, if a Packed Decimal number
has the value –123456 with a scale of 2, then the value of the combination is –1234.56.

Definitions

The decPacked.h header file does not define a specific data structure for Packed Decimal
numbers.

It includes the decNumber.h header file, to simplify use, and (if not already defined) it
sets the DECNUMDIGITS constant to 32, to allow for most common uses of Packed Decimal
numbers. If you wish to work with higher (or lower) precisions, define DECNUMDIGITS to
be the desired precision before including the decPacked.h header file.

The decPacked.h header file also contains:

• Constants describing the six possible values of sign nibble, as described above.

• Definitions of the public functions in the decPacked module.

22 Conventionally, this sign code can also be used to indicate that a number was originally unsigned.
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Functions

The decPacked.c source file contains the public functions defined in the header file.
These provide conversions to and from decNumber form.

decPackedFromNumber(bytes, length, scale, number)
This function is used to convert a decNumber to Packed Decimal format.

The arguments are:

bytes (uint8_t *) Pointer to an array of unsigned bytes which will receive the
number.

length (int32_t) Contains the length of the byte array, in bytes.

scale (int32_t *) Pointer to an int32_t which will receive the scale of the number.

number (decNumber *) Pointer to the input structure. The decNumber structure will
not be altered.

Returns bytes unless the decNumber has too many digits to fit in length bytes (allowing
for the sign) or is a special value (an infinity or NaN), in which cases NULL is returned
and the bytes and scale values are unchanged.

The number is converted to bytes in Packed Decimal format, right aligned in the bytes
array, whose length is given by the second parameter. The final 4-bit nibble in the array
will be one of the preferred sign nibbles, 1100 (0x0c) for + or 1101 (0x0d) for –. The
maximum number of digits that will fit in the array is therefore length×2–1. Unused bytes
and nibbles to the left of the number are set to 0.

The scale is set to the scale of the number (this is the exponent, negated). To force the
number to a particular scale, first use the decNumberRescale function (see page 35) on
the number, negating the required scale in order to adjust its exponent and coefficient as
necessary.

decPackedToNumber(bytes, length, scale, number)
This function is used to convert a Packed Decimal format number to decNumber form in
preparation for arithmetic or other operations.

The arguments are:

bytes (uint8_t *) Pointer to an array of unsigned bytes which contain the number
to be converted.

length (int32_t) Contains the length of the byte array, in bytes.

scale (int32_t *) Pointer to an int32_t which contains the scale of the number to
be converted. This must be set; use 0 if the number has no associated scale
(that is, it is an integer). The effective exponent of the resulting number (that
is, the number of significant digits in the number, less the scale, less 1) must
fit in 9 decimal digits.

number (decNumber *) Pointer to the decNumber structure which will receive the
number. It must have space for length×2–1 digits.
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Returns number, unless the effective exponent was out of range or the format of the bytes
array was invalid (the final nibble was not a sign, or an earlier nibble was not in the
range 0–9). In these error cases, NULL is returned and number will have the value 0.

Note that –0 and zeros with non-zero exponents are possible resulting numbers.
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Additional options

This section describes some additional features of the decNumber package, intended to
be used when customizing, tuning, or testing the package. If you are just using the
package for applications, using full IEEE arithmetic, you should not need to modify the
parameters controlling these features unless compiling for a big-endian target, in which
case the DECLITEND setting will need to be altered.

If any of these parameters is changed, all the decNumber source files being used must
be recompiled to ensure correct operation.

Each parameter is set to a default value in one of the header files, as noted below. The
parameters are only set if undefined, so the defaults can be overridden by compiler
command-line definitions (e.g., with the option –DDECUSE64=0).
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Customization parameters

The decNumber package includes four compile-time parameters for customizing its use.

The first parameter controls the layout of the compressed decimal formats (see page
44). The storage of a number in these formats must follow the byte ordering
(“endianness”) of the computing platform; this parameter determines how the formats
are loaded and stored. The parameter is set in the decNumberLocal.h file, and is:

DECLITEND This must be either 1 or 0. If 1, the target platform is assumed to be
little–endian (for example, AMD and Intel x86 architecture machines are
little–endian, where the byte containing the sign bit of the format is at the
highest memory address). If 0, the target platform is assumed to be
big–endian (for example, for IBM System z machines are big–endian, where
the byte containing the sign bit of the format is at the lowest memory
address).

Many compilers provide a compile-time definition for determining the
endianness of the target platform, and DECLITEND can in that case be
defined to use the provided definition.

The decContextTestEndian function can be called to check that the
DECLITEND parameter is set correctly.

A second customization parameter allows the use of 64-bit integers to improve the per-
formance of certain operations (notably multiplication and the mathematical functions),
even when DECDPUN (see page 69) is less than 5. (64-bit integers are required for the
decNumber module when DECDPUN is 5 or more.) The parameter is set in the
decNumberLocal.h file, and is:

DECUSE64 This must be either 1 or 0. If 1, which is recommended, 64-bit integers will
be used for most multiplications and mathematical functions when
DECDPUN<=4, and for most operations when DECDPUN>4. If set to 0, 64-bit
integer support is not used when DECDPUN<=4, and the maximum value for
DECDPUN is then 4. Full 64-bit support is not assumed; only 32×32 to 64 and
the inverse (divide) are used; most 32-bit compilers will be able to handle
these efficiently without requiring 64-bit hardware.

Another customization parameter controls whether the status flags returned by
decNumber are restricted to the five IEEE flags or comprise an extended set which gives
more detail about invalid operations along with some extra flags (this does not affect
performance). The parameter is set in the decContext.h file, and is:

DECEXTFLAG This must be either 1 or 0. If 1, the extended set of flags is used. If 0, only
5 bits are used, corresponding to the IEEE 754 flags.

The fourth customization parameter enables the inclusion of extra code which imple-
ments and enforces the subset arithmetic defined by ANSI X3.274. This option should
be disabled, for best performance, unless the subset arithmetic is required.

Version 3.61 Copyright (c) IBM Corporation 2008. All rights reserved. 67



The parameter is set in the decContext.h file, and is:

DECSUBSET This must be either 1 or 0. If 1, subset arithmetic is enabled. This setting
includes the extended flag in the decContext structure and all code which
depends on that flag. Setting DECSUBSET to 0 improves the performance of
many operations by 10%–20%.
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Tuning parameters

The decNumber package incorporates two compile-time parameters for tuning the per-
formance of the decNumber module. These are used to tune the trade-offs between
storage use and speed. The first of these determines the granularity of calculations (the
number of digits per unit of storage) and is normally set to three or to a power of two.
The second is normally set so that short numbers (tens of digits) require no storage
management – working buffers for operations will be stack based, not dynamically allo-
cated. These are:

DECDPUN This parameter is set in the decNumber.h file, and must be an integer in
the range 1 through 9. It sets the number of digits held in one unit (see page
26), which in turn alters the performance and other characteristics of the
library. In particular:

• If DECDPUN is 1, conversions are fast, but arithmetic operations are at
their slowest. In general, as the value of DECDPUN increases, arithmetic
speed improves and conversion speed gets worse.

• Conversions between the decNumber internal format and the
decimal64 and other compressed formats are fastest – sometimes by
as much as a factor of 4 or 5 – when DECDPUN is 3 (because Densely
Packed Decimal encodes digits in groups of three).

• If DECDPUN is not 1, 3, or a power of two, calculations converting digits
to units and vice versa are slow; this may slow some operations by up
to 20%.

• If DECDPUN is greater than 4, either non-ANSI-C-89 integers or library
calls have to be used for 64-bit intermediate calculations.23

The suggested value for DECDPUN is 3, which gives good performance for
working with the compressed decimal formats. If the compressed formats
are not being used, or 64-bit integers are unavailable (see DECUSE64, below),
then measuring the effect of changing DECDPUN to 4 is suggested. If the
library is to be used for high precision calculations (many tens of digits)
then it is recommended that measurements be made to evaluate whether
to set DECDPUN to 8 (or possibly to 9, though this will often be slower).

DECBUFFER This parameter is set in the decNumberLocal.h file, and must be a non-
negative integer. It sets the precision, in digits, which the operator func-
tions will handle without allocating dynamic storage.24

One or more buffers of at least DECBUFFER bytes will be allocated on the
stack, depending on the function. It is recommended that DECBUFFER be a
multiple of DECDPUN and also a multiple of 4, and large enough to hold
common numbers in your application.

23 The decNumber library currently assumes that non-ANSI-C-89 64-bit integers are available if DECDPUN
is greater than 4. See also the DECUSE64 code parameter.

24 Dynamic storage may still be allocated in certain cases, but in general this is rare.
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Testing parameters

The decNumber package also incorporates three compile-time parameters which control
the inclusion of extra code which provides for extra checking of input arguments, etc.,
run-time internal tracing control, and storage allocation auditing. These options are
usually disabled, for best performance, but are useful for testing and when introducing
new conversion routines, etc. It is recommended that DECCHECK be set to 1 while devel-
oping an application that uses decNumber. These parameters are all set in the
decNumberLocal.h file, and are:

DECCHECK This must be either 1 or 0. If 1, extra checking code, including input
structure reference checks, will be included in the module. The latter
checks that the structure references are not NULL, and that they refer to
valid (internally consistent in the current context) structures. If an invalid
reference is detected, the DEC_Invalid_operation status bit is set (which
may cause a trap), a message may be displayed using printf, and any
result will be a valid number of undefined value. This option is especially
useful when testing programs that construct decNumber structures explic-
itly.

Some operations take more than twice as long with this checking enabled,
so it is normally assumed that all decNumbers are valid and DECCHECK is
set to 0.

DECALLOC This must be either 1 or 0. If 1, all dynamic storage usage is audited and
extra space is allocated to enable buffer overflow corruption checks. The
cost of these checks is fairly small, but the setting should normally be left
as 0 unless changes are being made to the decNumber.c source file.

DECTRACE This must be either 1 or 0. If 1, certain critical values are traced (using
printf) as operations take place. This is intended for decNumber devel-
opment use only, so again should normally be left as 0.
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Appendix A – Library performance

The decNumber module implements arbitrary-precision arithmetic with fully tailorable
parameters (rounding precision, exponent range, and other factors can all be changed at
run time). All decNumber operations can accept arbitrary-length operands. Further,
decNumber uses a general-purpose internal format (tunable at compile time) which
therefore requires conversions to and from any external format (such as strings, BCD,
or the IEEE 754 fixed-size decimal encodings).

As a result, the module has significant overheads compared to the dedicated decFloats
modules (see page 48) which work directly on the fixed-size encodings. This appendix
compares the performance of the decNumber module with the decDouble and decQuad
implementations of the same operations. As the tables below show, there is a significant
performance advantage in using the decFloats modules when arbitrary-precision oper-
ations are not required.

Description of the tables

In the following tables, timings for each operation are given in processor clock cycles.
While generally a more useful indicator of comparative performance than “wall clock”
times, cycle counts vary considerably with processor architecture. For example, the times
below are cycles measured on an Intel Pentium M processor in an IBM X41T
Thinkpad;25 on a Pentium 4 or RISC processor most of the tests would show significantly
higher cycle counts. The compiler used also makes a measurable difference. Details of
the tests and compiler are given in the notes at the end of this appendix.

Throughout the tables, worst-case cycle times are shown for the main operations in the
decDouble and decQuad modules, compared with the same operations using the
decNumber module (which requires conversion of operands and results).

Worst-case timings are quoted because best-case timings are generally trivial special
cases (such as NaN arguments) and “typical” instruction mixes are very application-
dependent.

For each operation, the name of the operation is given, along with a brief description of
the worst-case form of the operation. This is the worst case for the decFloats module (in
some cases the worst case is different for the decNumber module).

25 “Intel” and “Pentium” are trade marks of the Intel Corporation. “Thinkpad” is a trade mark of Lenovo.
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decDouble performance tables

 

decDouble (64-bit) conversions

 Operation  decDouble  decNumber

 Encoding to BCD (with exponent)
 16-digit finite

 39   481  

 BCD to encoding (with exponent)
 16-digit finite

 46   327  

 Encoding to string
 16-digit, with exponent

 84   133  

 Exact string to encoding (unrounded)
 16-digit, with exponent

 229   196  

 String to encoding (rounded (see page 75))
 16-digit, rounded, with exponent

 266   548  

 Widen to decQuad
 16-digit, with exponent

 30   209  

 int32 to encoding
 From most negative int

 39   199  

 Encoded integer to int32
 To most negative int32

 32   136  

 decDouble (64-bit) miscellaneous operations

 Operation  decDouble  decNumber

 Class (classify datum)
 Negative small subnormal

 37   113  

 Copies (Abs/Negate/Sign)
 CopySign, copy needed

 25   338  

 Count significant digits
 Single digit

 24   122  

 Logical And/Or/Xor/Invert (digitwise)
 16-digit

 23   510  

 Shift/Rotate
 Rotate 15 digits

 154   583  
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 decDouble (64-bit) computations

 Operation  decDouble  decNumber

 Add (same-sign addition)
 16-digit, unaligned, rounded

 248   848  

 Subtract (different-signs addition)
 16-digit, unaligned, rounded, borrow

 288  

 Compare
 16-digit, unaligned, mismatch at end

 126   442  

 CompareTotal
 16-digit, unaligned, mismatch at end

 149   594  

 Divide
 16- by 16-digit (rounded)

 828   1576  

 FMA (fused multiply-add)
 16-digit, subtraction, rounded

 785   1683  

 LogB (returns a decDouble)
 Negative result

 48   279  

 MaxNum/MinNum
 16-digit, unaligned, mismatch at end

 155   656  

 Multiply
 16×16-digit, round needed

 362   1305  

 Quantize
 16-digit, round all-nines

 112   422  

 ScaleB (from decDoubles)
 Underflow

 212   513  

 To integral value
 16-digit, round all-nines

 135   709  
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decQuad performance tables

 

 decQuad (128-bit) conversions

 Operation  decQuad  decNumber

 Encoding to BCD (with exponent)
 34-digit finite

 53   460  

 BCD to encoding (with exponent)
 34-digit finite

 74   307  

 Encoding to string
 34-digit, with exponent

 183   239  

 Exact string to encoding (unrounded)
 34-digit, with exponent

 297   597  

 String to encoding (rounded (see page 75))
 34-digit, rounded, with exponent

 451   956  

 Narrow to decDouble
 34-digit, all nines

 140   612  

 int32 to encoding
 From most negative int

 44   199  

 Encoded integer to int32
 To most negative int32

 32   156  

 decQuad (128-bit) miscellaneous operations

 Operation  decQuad  decNumber

 Class (classify number)
 Negative small subnormal

 53   133  

 Copies (Abs/Negate/Sign)
 CopySign, copy needed

 27   380  

 Count significant digits
 Single digit

 27   138  

 Logical And/Or/Xor/Invert (digitwise)
 34-digit

 27   622  

 Shift/Rotate
 Rotate 33 digits

 222   812  
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Notes

The following notes apply to all the tables in this appendix.

1. All timings were made on an IBM X41T Tablet PC (Pentium M, 1.5GHz, 1.5GB
RAM) under Windows XP Tablet Edition with SP2; the modules were compiled using
GCC version 3.4.4 with optimization settings –O3 –march=i686.

2. The default tuning parameters were used (DECUSE64=1, DECDPUN=3, etc.); some
of these only affect decNumber.

3. Timings include call/return overhead, and for the decNumber module also include
the costs of converting operand(s) to decNumbers and results back to the appropriate
format using the decimal64 or decimal128 module.

4. “BCD” for decNumber is Packed BCD, using the decPacked module; for decFloats it
is 8-bit BCD.

 decQuad (128-bit) computations

 Operation  decQuad  decNumber

 Add (same-sign addition)
 34-digit, aligned

 433   1180  

 Subtract (different-signs addition)
 34-digit, unaligned, rounded, borrow

 457  

 Compare
 34-digit, unaligned, mismatch at end

 187   1125  

 CompareTotal
 34-digit, unaligned, mismatch at end

 238   778  

 Divide
 34- by 34-digit (rounded)

 2018   3172  

 FMA (fused multiply-add)
 34-digit, subtraction, rounded

 1622   2707  

 LogB (returns a decQuad)
 Negative result

 58   299  

 MaxNum/MinNum
 34-digit, unaligned, mismatch at end

 241   857  

 Multiply
 34×34-digit, round needed

 821   2235  

 Quantize
 34-digit, round all-nines

 209   670  

 ScaleB (from decQuads)
 Underflow

 263   553  

 To integral value
 34-digit, round all-nines

 233   886  
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5. The worst case for each operation is not always obvious from the code and is
implementation-dependent (for example, in the decFloats modules, an unaligned add
is sometimes faster than an aligned add). It is possible that there may be unusual
cases which are slower than the decFloats counts listed above, although a wide
variety of micro-benchmarks have been tried.

6. A string-to-number conversion can theoretically have an arbitrarily large worst case
as the string could contain any number of leading, trailing, or embedded zeros; the
timings above measured cases where the input string’s coefficient had up to eight
more digits than the precision of the destination format.
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Appendix B – Changes

This appendix documents changes since the first (internal) release of this document
(Draft 1.50, 21 Feb 2001).

Changes in Draft 1.60 (9 July 2001)

• The significand of a number has been renamed from integer to coefficient, to remove
possible ambiguities.

• The decNumberRescale function has been redefined to match the base specification.
In particular its rhs now specifies the new exponent directly, rather than as a
negated exponent.

• In general, all functions now return a reference to their primary result structure.

• The decPackedToNumber function now handles only “classic” Packed Decimal format
(there must be a sign nibble, which must be the final nibble of the packed bytes).
This improved conversion speed by a factor of two.

• Minor clarifications and editorial changes have been made.

Changes in Draft 1.65 (25 September 2001)

• The rounding modes DEC_ROUND_CEILING and DEC_ROUND_FLOOR have been added.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.00 (4 December 2001)

This is the first public release of this document.

• The decDoubleToSingle function will now round the value of the decDouble number
if it has more than 15 digits.

• The decNumberToInteger, decNumberRemainderNear, and decNumberVersion functions
have been added.

• Relatively minor changes have been made throughout to reflect support for the
extended specification.
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Changes in Version 2.11 (25 March 2002)

• The header files have been reorganized in order to move private type names (such
as Int and Flag) out of the external interface header files. In the external interface,
integer types now use the stdint.h names from C99.

• All but one of the compile-time parameters have been moved to the “internal”
decNumberLocal.h header file, and so are described in a new section (see page 66).

• The decNumberAbs, decNumberMax, and decNumberMin functions have been added.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.12 (23 April 2002)

• The decNumberTrim function has been added.

• The decNumberRescale function has been updated to match changed specifications;
it now sets the exponent as requested even for zero values.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.15 (5 July 2002)
The package has been updated to reflect the changes included in the combined arithmetic
specification. These preserve more digits of the coefficient together with extended zero
values if extended in the context is 1. Notably:

• The decNumberDivide and decNumberPower functions do not remove trailing zeros
after the operation. (The decNumberTrim function can be used to effect this, if
required.)

• A non-zero exponent on a zero value is now possible and is preserved in a manner
consistent with other numbers (that is, zero is no longer a special case).

• The decPackedToNumber function has been enhanced to allow zeros with non-zero
exponents to be converted without loss of information.

Changes in Version 2.17 (1 September 2002)

• The decNumberFromString, decSingleFromString, and decDoubleFromString functions
will now round the coefficient of a number to fit, if necessary. They also now accept
subnormal values and preserve the exponent of a 0. If an overflow or underflow
occurs, the DEC_Overflow or DEC_Underflow conditions are raised, respectively.

• The package has been corrected to ensure that subnormal values are no more precise
than permitted by IEEE 854.

• The underflow condition is now raised according to the IEEE 854 untrapped under-
flow criteria (instead of according to the IEEE 854 trapped criteria). That is,
underflow is now only raised when a result is both subnormal and inexact.

• The DEC_Subnormal condition has been added so that subnormal results can be
detected even if no Underflow condition is raised.

• Minor clarifications and editorial changes have been made.
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Changes in Version 2.28 (1 November 2002)

• The decNumberNormalize function has been added, as an operator. This makes the
coefficient of a number as short as possible while maintaining its numerical value.

• The decNumberSquareRoot function has been added. This returns the exact square
root of a number, rounded to the specified precision and normalized.

• When the extended setting is 1, long operands are used without input rounding, to
give a correctly rounded result (without double rounding). The DEC_Lost_digits flag
can therefore only be set when extended is 0.

• Minor editorial changes have been made.

Changes in Version 3.04 (22 February 2003)

The major change in decNumber version 3 is the replacement of the decSingle and
decDouble formats by the three new formats decimal32, decimal64, and decimal128. These
formats are now [June 2008] included in the IEEE-SA 754 standard.

Related and other enhancements include:

• The exponent minimum field, emin, has been added to the decContext structure.
This allows the unbalanced exponents used in the new formats.

• The exponent clamping flag, clamp, has been added to the decContext structure. This
provides explicit exponent clamping as used in the new formats.

• A new condition flag, DEC_Clamped has been introduced. This reports any situation
where the exponent of a finite result has been limited to fit in the available exponent
range.

• The header file bcd2dpd.h has been renamed decDPD.h to better describe its func-
tion.

• The DECSUBSET tuning parameter has been added. This controls the inclusion of the
code and flags required for subset arithmetic; when set to 0, the performance of
many operations is improved by 10%–20%.

• Double rounding which was possible with certain subnormal results has been elim-
inated.

• Minor editorial changes have been made.

Changes in Version 3.09 (23 July 2003)

This version implements some minor changes which track changes agreed by the IEEE
754 revision committee.

• The decNumberQuantize function has been added. Its function is identical to
decNumberRescale except that the second argument specifies the target exponent
“by example” rather than by value.

• The decNumberQuantize and decNumberRescale functions now report
DEC_Invalid_operation rather than DEC_Overflow if the result cannot fit.
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• The decNumberToInteger function has been replaced by the decNumberToIntegralValue
function. This implements the new rules for round-to-integral-value agreed by IEEE
754r. Notably:

• the exponent is only set to zero if the operand had a negative exponent

• the Inexact flag is not set.

• The decNumberSquareRoot function no longer normalizes. Its preferred exponent is
floor(operand.exponent/2).

Changes in Version 3.12 (1 September 2003)

This version adds a new function and slightly reorganizes the decimalnn modules.

• The decNumberSameQuantum function has been added. This tests whether two
numbers have the same exponents.

• The decimal128.h, decimal64.h, and decimal32.h header files now check that (if
more than one is included) they are included in order of reducing size. This makes
it harder to use a decNumber structure which is too small.

• . The shared DPD pack/unpack routines have been
moved from decimal32.c to decimal64.c, because the latter is more likely to be
used alone.

Changes in Version 3.16 (2 October 2003)

• NaN values may now use the coefficient to convey diagnostic information, and NaN
sign information is propagated along with that information.

• The decNumberQuantize function now allows both arguments to be infinite, and
treats NaNs in the same way as other functions.

Changes in Version 3.19 (21 November 2003)

• The decNumberIsInfinite, decNumberIsNaN, decNumberIsNegative, and decNumberIsZero
functions have been added to simplify tests on numbers. These functions are cur-
rently implemented as macros.

Changes in Version 3.24 (25 August 2004)

• The decNumberMax and decNumberMin functions have been altered to conform to the
maxnum and minnum functions in IEEE 754. That is, a total ordering is provided
for numerical comparisons, and if one operand is a quiet NaN but the other is a
number then the number is returned.

• The decimal64FromString function (and the same function for the other two formats)
now uses the rounding mode provided in the context structure.
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Changes in Version 3.25 (15 June 2005)

• Arguments to functions which are “input only” are now decorated with the const
keyword to make the functions easier and safer to call from a C++ wrapper class.

• The performance of arithmetic when DECDPUN<=3 has been improved substan-
tially; DECDPUN==3 performance is now similar to DECDPUN==4.

• An error in the decNumberRescale and decNumberQuantize functions has been
corrected. This returned 1.000 instead of NaN for quantize(0.9998, 0.001) under a
context with precision=3.

Changes in Version 3.32 (12 December 2005)

• The decNumberExp function has been added. This returns e raised to the power of
the operand.

• The decNumberLn and decNumberLog10 functions have been added. These return the
natural logarithm (logarithm in base e) or the logarithm in the base ten of the
operand, respectively.

• The decNumberPower function has been enhanced by removing restrictions; notably
it now allows raising numbers to non-integer powers.

• The DECENDIAN tuning parameter has been added. This allows the compressed dec-
imal formats (see page 44) to be stored using platform-dependent ordering for better
performance and compatibility with binary formats. This parameter can be set to
0 to get the same (big-endian) ordering on all platforms, as in earlier versions of the
decNumber package.

• The DECUSE64 tuning parameter (see page 67) has been added. This allows 64-bit
integers to be used to improve the performance of operations when DECDPUN<=4.
This parameter can be set to 0 to ensure only 32-bit integers are used when
DECDPUN<=4.

• The compressed decimal formats are widely used with the decNumber package, so
the initial setting of DECDPUN has been changed to 3 (from 4), and DECENDIAN and
DECUSE64 are both set to 1 (to use platform ordering and 64-bit arithmetic). These
settings significantly improve the speed of conversions to and from the compressed
formats and the speed of multiplications and other operations.

• Minor clarifications and editorial changes have been made.

Changes in Version 3.37 (22 November 2006)

• The decNumberCompareTotal (total ordering comparison), decNumberIsQNaN, and
decNumberIsSNaN functions have been added.
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Changes in Version 3.40 (18 April 2007)
This is a major upgrade to decNumber to add logical and shifting functions together with
generalizations of most of the new functions required by the IEEE 754 standard.

The changes included in this update are:

• Thirty-four new functions have been added to the decNumber module (all names
have the prefix decNumber): And, CompareSignal, CompareTotalMag, CopyAbs,
CopyNegate, CopySign, Class, ClassToString, FMA, FromInt, FromUInt, GetBCD, Invert,
IsCanonical, IsFinite, IsNormal, IsSpecial, IsSubnormal, LogB, MaxMag, MinMag,
NextMinus, NextPlus, NextToward, Or, Radix, Rotate, ScaleB, SetBCD, Shift,
ToIntegralExact, ToInt32, ToUInt32, Xor.

• Two new functions have been added to each of the three decimalNN modules:
decimalNNIsCanonical, decimalNNCanonical.

• The DECENDIAN setting (in decNumberLocal.h) has been removed to improve per-
formance; instead, you must set the DECLITEND parameter (see page 67) to 1 if
compiling for a little-endian target, or to 0 if compiling for a big-endian target. If
DECCHECK is set to 1 (highly recommended while testing), any call to
decContextDefault will check that DECLITEND is set correctly.

• The DECEXTFLAG parameter (see page 67) has been added (in decContext.h). This
controls whether the status flags returned by decNumber are restricted to the five
IEEE flags or comprise an extended set which gives more detail about invalid oper-
ations along with some extra flags (this does not affect performance). The default
is the extended set of flags, as in earlier versions of decNumber.

Changes in Version 3.41 (7 May 2007)

• Minor corrections (notably to the descriptions of the FromString functions) and clar-
ifications have been made.

Changes in Version 3.50 (4 June 2007)
This is a major upgrade to decNumber which adds three new modules (decSingle,
decDouble, and decQuad) with 175 new functions. These modules provide functions
which work directly with the decimal32, decimal64, and decimal128 formats, to provide
high performance when arbitrary-precision calculations are not needed.

In addition to the new modules, the changes included in this update are:

• Two new examples have been added to the User’s Guide, showing how to use the new
modules either stand-alone or in conjunction with the decNumber module.

• Eleven new functions have been added to the decContext module to match those
required by the IEEE 754 standard.

• Synonyms for DEC_INIT_DECIMAL32, etc., have been provided to match the names of
the new modules, called DEC_INIT_DECSINGLE, etc.

• The decClasses enumeration and strings have been moved from decNumber.h to
decContext.h so that they can be used from all modules.

• The DECVERSION constant has been moved from decNumber.h to decNumberLocal.h
so that it can be used from all modules.
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• The decNumberNormalize function has been renamed decNumberReduce for clarity
(it is still available in the code and header file under the old name, for compatibility).

• A new appendix comparing the performance of the decNumber module to the new
decDouble and decQuad modules has been added.

• Numerous clarifications and editorial changes have been made.

Changes in Version 3.53 (7 September 2007)
This release of decNumber is a code maintenance release; the problems corrected are:

• decNumberRemainder: the sign of a zero result was occasionally different from that
specified by IEEE 854

• decNumberSquareRoot: several problems related to subnormal results that were not
covered by Hull’s algorithm and also when the input argument was wider than the
requested result width

• decNumber and decFloats: under the DEC_ROUND_05UP rounding mode Infinity was
being returned after overflow instead of the number with the greatest possible
magnitude

• decQuadDivide: divisions where both operands had more than 27 digits and the
result was extremely close to one (all but the last few digits the same) could return
a value slightly larger than one instead of just less than one; this also affected the
decQuadDivideInteger and remainder functions (but not decDouble or decNumber
divisions or remainder)

• decDoubleFromString and decQuadFromString: the restriction that the input string
should not be followed by unaddressable memory has been removed

• numerous code changes have been made to avoid new warnings in recent releases
of GCC.

New testcases have been added for all the above cases.

Changes in Version 3.56 (12 October 2007)
This release of decNumber is a code maintenance release primarily to widen the appli-
cability of the package. The changes are:

• The modules now conform to the C99 strict aliasing rules (that is, no longer cast
char * pointers to int *, etc., because such casts are forbidden in C99).

• As a consequence of the previous change, the decDouble (etc.) structures have been
changed to unions, allowing access through wider integer types as well as by bytes.

• Accesses to memory through an integer type are now always aligned. (Some RISC
platforms reported alignment problems with parts of the code; thanks are due to
Nelson Beebe for identifying and testing these cases.)

• The decContextTestEndian function has been added. This tests that the DECLITEND
tuning parameter (see page 67) is set correctly, and optionally displays a message
if it is not. A call to this function has been added to example1.c. This test is no
longer automatic under DECCHECK (it was inconvenient in some cases).
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• The customization and tuning parameters are now only set to default values in the
header files if not already defined. These means that they can be set from the
compiler command line if desired (e.g., with the option –DDECUSE64=0).

• The decDoubleFromPackedChecked function has been added (also for decSingle and
decQuad); this is the same as decDoubleFromPacked except that all input values are
checked.

• Edge-case errors in multiply, FMA, and remainder functions have been corrected.

• Minor code changes have been made to improve performance in some areas.

Changes in Version 3.61 (9 July 2008)
This release of decNumber is a code maintenance and performance release. The changes
are:

• A fastpath has been added to decDoubleAdd and decQuadAdd for the common case
of aligned additions with exact results. This typically improves the performance in
these cases by 2× or 3× respectively.

• The performance of decNumberSquareRoot has been improved when the result is
exact or definitely inexact.

• The IEEE 854 names in decContext.h are now supplied with IEEE 754 names too
(e.g., DEC_IEEE_754_Inexact).

• References to IEEE 854 and the old IEEE 754 standard have been removed and/or
changed to refer to IEEE 754-2008.

• A problem in decFloatSubtract and decFloatQuantize due to the ISCOEFFZERO macro
re-using UBTOUI has been corrected (this only affected compilers that take advantage
of C99 strict aliasing rules). This problem was previously published as an errata to
3.56.

• A buffer in decQuadQuantize was two bytes too short when the coefficient of the first
operand had to be extended with 33 zeros; this is now corrected. This problem was
previously published as an errata to 3.56.
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decContextSetStatusQuiet function 23
decContextStatusToString function 23
decContextTestEndian function 24
decContextTestSavedStatus function 24
decContextTestStatus function 24
decContextZeroStatus function 24
decDouble 2, 4

bytes 49
module 48
performance 72
using 14

decDouble.h file 49
decDoubleAbs function 50
decDoubleAdd function 50
decDoubleAnd function 51
decDoubleCanonical function 51
decDoubleClass function 51
decDoubleClassString function 51
decDoubleCompare function 51
decDoubleCompareSignal function 51
decDoubleCompareTotal function 51
decDoubleCompareTotalMag function 51
decDoubleCopy function 51
decDoubleCopyAbs function 51
decDoubleCopyNegate function 52
decDoubleCopySign function 52
decDoubleDigits function 52
decDoubleDivide function 52
decDoubleDivideInteger function 52
decDoubleFMA function 52
decDoubleFromBCD function 52
decDoubleFromInt32 function 53
decDoubleFromNumber function 53
decDoubleFromPacked function 53
decDoubleFromPackedChecked
function 53

decDoubleFromString function 54
decDoubleFromUInt32 function 54
decDoubleFromWider function 54
decDoubleGetCoefficient function 54
decDoubleGetExponent function 54
decDoubleInvert function 54
decDoubleIsCanonical function 55
decDoubleIsFinite function 55
decDoubleIsInfinite function 55
decDoubleIsInteger function 55
decDoubleIsNaN function 55
decDoubleIsNormal function 55
decDoubleIsSignaling function 55
decDoubleIsSignalling function 55

decDoubleIsSigned function 55
decDoubleIsSubnormal function 55
decDoubleIsZero function 56
decDoubleLogB function 56
decDoubleMax function 56
decDoubleMaxMag function 56
decDoubleMin function 56
decDoubleMinMag function 56
decDoubleMinus function 56
decDoubleMultiply function 56
decDoubleNextMinus function 56
decDoubleNextPlus function 57
decDoubleNextToward function 57
decDoubleOr function 57
decDoublePlus function 57
decDoubleQuantize function 57
decDoubleRadix function 57
decDoubleReduce function 57
decDoubleRemainder function 58
decDoubleRemainderNear function 58
decDoubleRotate function 58
decDoubleSameQuantum function 58
decDoubleScaleB function 58
decDoubleSetCoefficient function 58
decDoubleSetExponent function 59
decDoubleShift function 59
decDoubleShow function 59
decDoubleSubtract function 59
decDoubleToBCD function 59
decDoubleToEngString function 59
decDoubleToInt32 function 60
decDoubleToInt32Exact function 60
decDoubleToIntegralExact function 60
decDoubleToIntegralValue function 60
decDoubleToNumber function 60
decDoubleToPacked function 60
decDoubleToString function 61
decDoubleToUInt32 function 61
decDoubleToUInt32Exact function 61
decDoubleToWider function 61
decDoubleVersion function 61
decDoubleXor function 61
decDoubleZero function 62
decDPD.h file 45, 49
DECDPUN tuning parameter 26, 27, 69
DECENDIAN tuning parameter 82
DECEXTFLAG code parameter 67
DECEXTFLAG tuning parameter 19, 82
decFloats 1, 2, 4

performance 71
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using 14, 15
decFloats modules 48
decimal arithmetic 1

using 4
decimal128 2

bytes 44
module 44
using 12

decimal128.h file 44
decimal128Canonical function 47
decimal128FromNumber function 46
decimal128FromString function 45
decimal128IsCanonical function 47
decimal128ToEngString function 46
decimal128ToNumber function 46
decimal128ToString function 46
decimal32 2

bytes 44
module 44
using 12

decimal32.h file 44
decimal32Canonical function 47
decimal32FromNumber function 46
decimal32FromString function 45
decimal32IsCanonical function 47
decimal32ToEngString function 46
decimal32ToNumber function 46
decimal32ToString function 46
decimal64 2

bytes 44
module 44
using 12

decimal64 numbers 11
decimal64.h file 44
decimal64Canonical function 47
decimal64FromNumber function 46
decimal64FromString function 45
decimal64IsCanonical function 47
decimal64ToEngString function 46
decimal64ToNumber function 46
decimal64ToString function 46
DECLITEND code parameter 67
DECLITEND tuning parameter 44, 49
DECNEG sign bit 27
decNumber 1, 25

bits 25
coefficient 25
digits 25
examples 26
exponent 25

lsu 26
module 25
msu 26
performance 71
sign 25
significand 25
size 25
special values 25
version 43, 61

decNumber.h file 6, 69
decNumberAbs function 30
decNumberAdd function 30
decNumberAnd function 30
decNumberClass function 37
decNumberClassToString function 37
decNumberCompare function 30
decNumberCompareSignal function 31
decNumberCompareTotal function 31
decNumberCompareTotalMag
function 31

decNumberCopy function 37
decNumberCopyAbs function 38
decNumberCopyNegate function 38
decNumberCopySign function 38
decNumberDivide function 31
decNumberDivideInteger function 31
decNumberExp function 31
decNumberFMA function 31
decNumberFromInt32 function 38
decNumberFromString function 28
decNumberFromUInt32 function 38
decNumberGetBCD function 39
decNumberInvert function 32
decNumberIsCanonical function 39
decNumberIsFinite function 39
decNumberIsInfinite function 39
decNumberIsNaN function 39
decNumberIsNegative function 40
decNumberIsNormal function 40
decNumberIsQNaN function 40
decNumberIsSNaN function 40
decNumberIsSpecial function 40
decNumberIsSubnormal function 41
decNumberIsZero function 41
decNumberLn function 32
decNumberLocal.h file 16, 67, 69, 70
decNumberLog10 function 32
decNumberLogB function 32
decNumberMax function 32
decNumberMaxMag function 32
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decNumberMin function 33
decNumberMinMag function 33
decNumberMinus function 33
decNumberMultiply function 33
decNumberNextMinus function 33
decNumberNextPlus function 33
decNumberNextToward function 33
decNumberNormalize

See decNumberReduce
decNumberOr function 34
decNumberPlus function 34
decNumberPower function 34
decNumberQuantize function 34
decNumberRadix function 41
decNumberReduce function 41
decNumberRemainder function 35
decNumberRemainderNear function 35
decNumberRescale function 35
decNumberRotate function 35
decNumberSameQuantum function 36
decNumberScaleB function 36
decNumberSetBCD function 41
decNumberShift function 36
decNumberSquareRoot function 36
decNumberSubtract function 36
decNumberToEngString function 29
decNumberToInt32 function 42
decNumberToIntegralExact function 36
decNumberToIntegralValue 80
decNumberToIntegralValue function 37
decNumberToString function 29
decNumberToUInt32 function 42
decNumberTrim function 42
decNumberUnit type 26, 69
decNumberVersion function 43
decNumberXor function 37
decNumberZero function 43
DECNUMDIGITS constant 11, 12, 26

set by decimal128.h 44
set by decimal32.h 44
set by decimal64.h 44
set by decPacked.h 63

decPacked 2
module 63
using 13

decPacked.h file 63
decPackedFromNumber function 64
decPackedToNumber function 64
decQuad 2, 4

bytes 49

decNumber use 15
module 48
performance 74
using 14, 15

decQuad.h file 49
decQuadAbs function 50
decQuadAdd function 50
decQuadAnd function 51
decQuadCanonical function 51
decQuadClass function 51
decQuadClassString function 51
decQuadCompare function 51
decQuadCompareSignal function 51
decQuadCompareTotal function 51
decQuadCompareTotalMag function 51
decQuadCopy function 51
decQuadCopyAbs function 51
decQuadCopyNegate function 52
decQuadCopySign function 52
decQuadDigits function 52
decQuadDivide function 52
decQuadDivideInteger function 52
decQuadFMA function 52
decQuadFromBCD function 52
decQuadFromInt32 function 53
decQuadFromNumber function 53
decQuadFromPacked function 53
decQuadFromPackedChecked
function 53

decQuadFromString function 54
decQuadFromUInt32 function 54
decQuadGetCoefficient function 54
decQuadGetExponent function 54
decQuadInvert function 54
decQuadIsCanonical function 55
decQuadIsFinite function 55
decQuadIsInfinite function 55
decQuadIsInteger function 55
decQuadIsNaN function 55
decQuadIsNormal function 55
decQuadIsSignaling function 55
decQuadIsSignalling function 55
decQuadIsSigned function 55
decQuadIsSubnormal function 55
decQuadIsZero function 56
decQuadLogB function 56
decQuadMax function 56
decQuadMaxMag function 56
decQuadMin function 56
decQuadMinMag function 56
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decQuadMinus function 56
decQuadMultiply function 56
decQuadNextMinus function 56
decQuadNextPlus function 57
decQuadNextToward function 57
decQuadOr function 57
decQuadPlus function 57
decQuadQuantize function 57
decQuadRadix function 57
decQuadReduce function 57
decQuadRemainder function 58
decQuadRemainderNear function 58
decQuadRotate function 58
decQuadSameQuantum function 58
decQuadScaleB function 58
decQuadSetCoefficient function 58
decQuadSetExponent function 59
decQuadShift function 59
decQuadShow function 59
decQuadSubtract function 59
decQuadToBCD function 59
decQuadToEngString function 59
decQuadToInt32 function 60
decQuadToInt32Exact function 60
decQuadToIntegralExact function 60
decQuadToIntegralValue function 60
decQuadToNumber function 60
decQuadToPacked function 60
decQuadToString function 61
decQuadToUInt32 function 61
decQuadToUInt32Exact function 61
decQuadVersion function 61
decQuadXor function 61
decQuadZero function 62
decSingle 2, 4

bytes 49
module 48

decSingle.h file 49
decSingleFromBCD function 52
decSingleFromNumber function 53
decSingleFromPacked function 53
decSingleFromPackedChecked
function 53

decSingleFromString function 54
decSingleFromWider function 54
decSingleGetCoefficient function 54
decSingleGetExponent function 54
decSingleRadix function 57
decSingleSetCoefficient function 58
decSingleSetExponent function 59

decSingleShow function 59
decSingleToBCD function 59
decSingleToEngString function 59
decSingleToNumber function 60
decSingleToPacked function 60
decSingleToString function 61
decSingleToWider function 61
decSingleVersion function 61
decSingleZero function 62
DECSUBSET code parameter 68
DECSUBSET tuning parameter 19
DECTRACE code parameter 70
DECUSE64 code parameter 67
DECUSE64 tuning parameter 5
Densely Packed Decimal 44, 45, 49, 69

coding and decoding 44
development aids 70
digits

in a decFloat 52
in decContext 17
in decNumber 25

division 31, 35, 52
DPD

See Densely Packed Decimal
dynamic storage 16, 27, 69, 70

auditing 70

E

e 31, 32
emax

in decContext 17
emin 79

in decContext 17
endian 44, 49, 67
engineering notation 29, 46, 59
error handling 18

active 9
passive 8
with signal 9

example 4
active error handling 9
compound interest 7
compressed formats 11
decimal64 numbers 11
decNumber 26
decPacked module 13
decQuad module 14, 15
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Example 1 6
Example 2 7
Example 3 8
Example 4 9
Example 5 11
Example 6 13
Example 7 14
Example 8 15
passive error handling 8
simple addition 6
special values 27

exceptional conditions 18
exclusive or, logical 37, 61
exp operation 31
exponent

adjusted 17, 25
adjusting 36
checking 36
in decNumber 25
maximum 17
minimum 17
scaling 36
setting 34, 35

exponentiation 31, 34
extended

in decContext 19

F

features, extra 66
file

header 1
source 1

fized-size representations 1
FMA

See fused multiply-add
functions

arithmetic 30
conversions 28
logical 30
mathematical 30
naming convention 16
utilities 37

fused multiply-add operation 31, 52

G

General Decimal Arithmetic 1, 50

H

header file 1
decContext 19
decDouble 49
decDPD 45, 49
decimal128 44
decimal32 44
decimal64 44
decNumber 27
decNumberLocal 16, 69, 70
decPacked 63
decQuad 49
decSingle 49

I

inclusive or, logical 34, 57
Inexact condition 8, 20
infinite results 28
infinity 25
initializing numbers 28, 43
int data type 16
integer rounding 36, 37, 60
integers

64-bit 16, 48
unaligned 16, 48

invert, logical 32, 54

L

little-endian 44, 49, 67
ln operation 32
log10 operation 32
logarithm

base 10 32
base e 32
exponent 32
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natural 32
logB operation 32, 56
logical

and 30, 51
exclusive or 37, 61
functions 30
inclusive or 34, 57
invert 32
or 34, 57, 61
xor 37

long data type 16
longjmp function 9
Lost digits condition 20
lsu, in decNumber 26

M

mathematical functions 30
max operation 32, 56
maximum exponent 17
maxmag operation 32, 56
min operation 33, 56
minimum exponent 17
minmag operation 33, 56
minus operation 33, 56

quiet 38, 52
modification of arguments 28
module 16

decContext 17
decDouble 48
decimal128 44
decimal32 44
decimal64 44
decNumber 25
decPacked 63
decQuad 48
decSingle 48
naming convention 16
reentrancy 16, 48
unaligned integers 16, 48

monadic operators 30
msu, in decNumber 26
multiplication 31, 33, 56

N

naming convention
constants 16
functions 16
modules 16

NaN 25
diagnostic 25
quiet 25
results 28
signaling 25

narrowing decFloat 54
negation 33, 38, 52
nibble 53, 60, 63
normal values 17, 40, 41
normalizing numbers 41, 57, 79

O

options, extra 66
or, logical 34, 37, 57, 61

P

packed BCD 53
checking 53

Packed Decimal 1, 2, 63
parameters

compile-time 66
tuning 27, 69

performance 71
cycles 71
decDouble 72
decQuad 74
notes 75
tables 71

performance tuning 69
plus operation 34, 57
power operator 34
prefix

abs 30
minus 33
plus 34

printf a decFloat 59
printf function 6, 70
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proxies 44, 49

Q

quantizing 34, 36, 57
to integral 36, 37, 60

quiet NaN 25

R

radix 41, 57
reduce operation 41, 57
reentrant modules 16, 48
references, to arguments 16
remainder 35, 58
rescaling 34, 35, 36
results

rounding of 20
undefined 28

root, square 36
rotating 35, 58
round

See also rounding
in decContext 17

round enumeration 19
round-to-integer operation 36, 37, 60
Rounded condition 8, 20
rounding

detection of 20
enumeration 17
to decimal places 34
to integer 34, 36, 37, 60
using decNumberPlus 34

S

scale 2, 63
by powers of ten 36, 58
checking 36
setting 34, 35

scientific notation 29, 46
setjmp function 10
shifting 36, 59
showing a decFloat 59
SIGFPE

implementation issues 5
signal 9, 10, 18

sign
copying 38, 52
DECNEG bit 27
in decNumber 25

signal
function 10
handler 9

signaling NaN 25
significand

See also coefficient
in decNumber 25

size, of decNumber 25
source file 1

decContext 20
decDouble 50
decimal128 45
decimal32 45
decimal64 45
decNumber 28
decPacked 64
decQuad 50
decSingle 50

special values 18, 25, 27
in decNumber 25

specification
arithmetic 1

speed of operations 27, 69
square root operation 36, 79, 80
status

in decContext 18
stdint.h file 5
stdio.h file 6
storage allocation 70

auditing 70
strict aliasing 16, 48
Subnormal condition 20
subnormal values 17, 25, 29, 37, 40, 41,
78

subset arithmetic, enabling 68
subtraction 36, 59
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T

test aids 59, 70
testing decFloats 55, 56, 58
testing numbers 39, 40, 41
trailing zeros, removing 41, 42, 57
traps 18

in decContext 18
trimming numbers 42
tuning parameter 16, 69

DECBUFFER 69
DECDPUN 27, 69
DECEXTFLAG 19
DECLITEND 44, 49
DECSUBSET 19

U

unaligned integers 16, 48
undefined results 28
unit

in decNumber 26
size of 26, 27, 69

User’s Guide 4
utilities

decNumber 37

V

value of a number 25
version, of decNumber 43, 61

W

widening decFloats 61

X

xor, logical 37

Z

zero decNumber 26
zeroing numbers 43, 62
zeros, removing trailing 41, 42, 57
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