
DWARF Debugging Information Format

Industry Review Draft

This document specifies the second generation of symbolic debugging information based on the DWARF
format that has been developed by the UNIX International Programming Language Special Interest Group
(SIG). It is being circulated for industry review.

Copyright 1992, 1993 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name UNIX International
not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission. UNIX International makes no representations about the suitability of this documentation
for any purpose. It is provided "as is" without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS DOCUMENTATION.

NOTICE:

UNIX International is making this documentation available as a reference point for the industry. While UNIX

International believes that this specification is well defined in this first release of the document, minor
changes may be made prior to products meeting this specification being made available from UNIX System
Laboratories or UNIX International members.

Trademarks:

Intel386 is a trademark of Intel Corporation.
UNIX is a registered trademark of UNIX System Laboratories in the United States and other countries.

Industry Review Draft

DWARF Debugging Information Format

1. INTRODUCTION

This document defines the format for the information generated by compilers, assemblers and
linkage editors that is necessary for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger. Instead, the goal is to
create a method of communicating an accurate picture of the source program to any debugger in a
form that is economically extensible to different languages while retaining backward
compatibility.

The design of the debugging information format is open-ended, allowing for the addition of new
debugging information to accommodate new languages or debugger capabilities while remaining
compatible with other languages or different debuggers.

1.1 Purpose and Scope

The debugging information format described in this document is designed to meet the symbolic,
source-level debugging needs of different languages in a unified fashion by requiring language
independent debugging information whenever possible. Individual needs, such as C++ virtual
functions or Fortran common blocks are accommodated by creating attributes that are used only
for those languages. The UNIX International Programming Languages SIG believes that this
document sufficiently covers the debugging information needs of C, C++, FORTRAN77,
Fortran90, Modula2 and Pascal.

This document describes DWARF Version 2, the second generation of debugging information
based on the DWARF format. While DWARF Version 2 provides new debugging information
not available in Version 1, the primary focus of the changes for Version 2 is the representation of
the information, rather than the information content itself. The basic structure of the Version 2
format remains as in Version 1: the debugging information is represented as a series of debugging
information entries, each containing one or more attributes (name/value pairs). The Version 2
representation, however, is much more compact than the Version 1 representation. In some cases,
this greater density has been achieved at the expense of additional complexity or greater difficulty
in producing and processing the DWARF information. We believe that the reduction in I/O and
in memory paging should more than make up for any increase in processing time.

Because the representation of information has changed from Version 1 to Version 2, Version 2
DWARF information is not binary compatible with Version 1 information. To make it easier for
consumers to support both Version 1 and Version 2 DWARF information, the Version 2
information has been moved to a different object file section, .debug_info.

The intended audience for this document are the developers of both producers and consumers of
debugging information, typically language compilers, debuggers and other tools that need to
interpret a binary program in terms of its original source.

1.2 Overview

There are two major pieces to the description of the DWARF format in this document. The first
piece is the informational content of the debugging entries. The second piece is the way the
debugging information is encoded and represented in an object file.

The informational content is described in sections two through six. Section two describes the
overall structure of the information and attributes that are common to many or all of the different
debugging information entries. Sections three, four and five describe the specific debugging
information entries and how they communicate the necessary information about the source

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1
Industry Review Draft

DWARF Debugging Information Format

program to a debugger. Section six describes debugging information contained outside of the
debugging information entries, themselves. The encoding of the DWARF information is
presented in section seven.

Section eight describes some future directions for the DWARF specification.

In the following sections, text in normal font describes required aspects of the DWARF format.
Text in italics is explanatory or supplementary material, and not part of the format definition
itself.

1.3 Vendor Extensibility

This document does not attempt to cover all interesting languages or even to cover all of the
interesting debugging information needs for its primary target languages (C, C++, FORTRAN77,
Fortran90, Modula2, Pascal). Therefore the document provides vendors a way to define their own
debugging information tags, attributes, base type encodings, location operations, language names,
calling conventions and call frame instructions by reserving a portion of the name space and valid
values for these constructs for vendor specific additions. Future versions of this document will
not use names or values reserved for vendor specific additions. All names and values not
reserved for vendor additions, however, are reserved for future versions of this document. See
section 7 for details.

1.4 Changes from Version 1

The following is a list of the major changes made to the DWARF Debugging Information Format
since Version 1 of the format was published (January 20, 1992). The list is not meant to be
exhaustive.

• Debugging information entries have been moved from the .debug to the .debug_info
section of an object file.

• The tag, attribute names and attribute forms encodings have been moved out of the debugging
information itself to a separate abbreviations table.

• Explicit sibling pointers have been made optional. Each entry now specifies (through the
abbreviations table) whether or not it has children.

• New more compact attribute forms have been added, including a variable length constant data
form. Attribute values may now have any form within a given class of forms.

• Location descriptions have been replaced by a new, more compact and more expressive
format. There is now a way of expressing multiple locations for an object whose location
changes during its lifetime.

• There is a new format for line number information that provides information for code
contributed to a compilation unit from an included file. Line number information is now in
the .debug_line section of an object file.

• The representation of the type of a declaration has been reworked.

• A new section provides an encoding for pre-processor macro information.

• Debugging information entries now provide for the representation of non-defining
declarations of objects, functions or types.

• More complete support for Modula2 and Pascal has been added.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 2
Industry Review Draft

DWARF Debugging Information Format

• There is now a way of describing locations for segmented address spaces.

• A new section provides an encoding for information about call frame activations.

• The representation of enumeration and array types has been reworked so that DWARF
presents only a single way of representing lists of items.

• Support has been added for C++ templates and exceptions.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 3
Industry Review Draft

DWARF Debugging Information Format

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 4
Industry Review Draft

DWARF Debugging Information Format

2. GENERAL DESCRIPTION

2.1 The Debugging Information Entry

DWARF uses a series of debugging information entries to define a low-level representation of a
source program. Each debugging information entry is described by an identifying tag and
contains a series of attributes. The tag specifies the class to which an entry belongs, and the
attributes define the specific characteristics of the entry.

The set of required tag names is listed in Figure 1. The debugging information entries they
identify are described in sections three, four and five.

The debugging information entries in DWARF Version 2 are intended to exist in the
.debug_info section of an object file.

_ __
DW_TAG_access_declaration DW_TAG_array_type
DW_TAG_base_type DW_TAG_catch_block
DW_TAG_class_type DW_TAG_common_block
DW_TAG_common_inclusion DW_TAG_compile_unit
DW_TAG_const_type DW_TAG_constant
DW_TAG_entry_point DW_TAG_enumeration_type
DW_TAG_enumerator DW_TAG_file_type
DW_TAG_formal_parameter DW_TAG_friend
DW_TAG_imported_declaration DW_TAG_inheritance
DW_TAG_inlined_subroutine DW_TAG_label
DW_TAG_lexical_block DW_TAG_member
DW_TAG_module DW_TAG_namelist
DW_TAG_namelist_item DW_TAG_packed_type
DW_TAG_pointer_type DW_TAG_ptr_to_member_type
DW_TAG_reference_type DW_TAG_set_type
DW_TAG_string_type DW_TAG_structure_type
DW_TAG_subprogram DW_TAG_subrange_type
DW_TAG_subroutine_type DW_TAG_template_type_param
DW_TAG_template_value_param DW_TAG_thrown_type
DW_TAG_try_block DW_TAG_typedef
DW_TAG_union_type DW_TAG_unspecified_parameters
DW_TAG_variable DW_TAG_variant
DW_TAG_variant_part DW_TAG_volatile_type
DW_TAG_with_stmt_ __

Figure 1. Tag names

2.2 Attribute Types

Each attribute value is characterized by an attribute name. The set of attribute names is listed in
Figure 2.

The permissible values for an attribute belong to one or more classes of attribute value forms.
Each form class may be represented in one or more ways. For instance, some attribute values
consist of a single piece of constant data. ‘‘Constant data’’ is the class of attribute value that
those attributes may have. There are several representations of constant data, however (one, two,
four, eight bytes and variable length data). The particular representation for any given instance of
an attribute is encoded along with the attribute name as part of the information that guides the

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 5
Industry Review Draft

DWARF Debugging Information Format

DW_AT_abstract_origin DW_AT_accessibility
DW_AT_address_class DW_AT_artificial
DW_AT_base_types DW_AT_bit_offset
DW_AT_bit_size DW_AT_byte_size
DW_AT_calling_convention DW_AT_common_reference
DW_AT_comp_dir DW_AT_const_value
DW_AT_containing_type DW_AT_count
DW_AT_data_member_location DW_AT_decl_column
DW_AT_decl_file DW_AT_decl_line
DW_AT_declaration DW_AT_default_value
DW_AT_discr DW_AT_discr_list
DW_AT_discr_value DW_AT_encoding
DW_AT_external DW_AT_frame_base
DW_AT_friend DW_AT_high_pc
DW_AT_identifier_case DW_AT_import
DW_AT_inline DW_AT_is_optional
DW_AT_language DW_AT_location
DW_AT_low_pc DW_AT_lower_bound
DW_AT_macro_info DW_AT_name
DW_AT_namelist_item DW_AT_ordering
DW_AT_priority DW_AT_producer
DW_AT_prototyped DW_AT_return_addr
DW_AT_segment DW_AT_sibling
DW_AT_specification DW_AT_start_scope
DW_AT_static_link DW_AT_stmt_list
DW_AT_stride_size DW_AT_string_length
DW_AT_type DW_AT_upper_bound
DW_AT_use_location DW_AT_variable_parameter
DW_AT_virtuality DW_AT_visibility
DW_AT_vtable_elem_location___

Figure 2. Attribute names

interpretation of a debugging information entry. Attribute value forms may belong to one of the
following classes.

address Refers to some location in the address space of the described program.

block An arbitrary number of uninterpreted bytes of data.

constant One, two, four or eight bytes of uninterpreted data, or data encoded in the
variable length format known as LEB128 (see section 7.6).

flag A small constant that indicates the presence or absence of an attribute.

reference Refers to some member of the set of debugging information entries that
describe the program. There are two types of reference. The first is an
offset relative to the beginning of the compilation unit in which the
reference occurs and must refer to an entry within that same compilation
unit. The second type of reference is the address of any debugging
information entry within the same executable or shared object; it may refer
to an entry in a different compilation unit from the unit containing the

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 6
Industry Review Draft

DWARF Debugging Information Format

reference.

string A null-terminated sequence of zero or more (non-null) bytes. Data in this
form are generally printable strings. Strings may be represented directly in
the debugging information entry or as an offset in a separate string table.

There are no limitations on the ordering of attributes within a debugging information entry, but to
prevent ambiguity, no more than one attribute with a given name may appear in any debugging
information entry.

2.3 Relationship of Debugging Information Entries

A variety of needs can be met by permitting a single debugging information entry to ‘‘own’’ an
arbitrary number of other debugging entries and by permitting the same debugging information
entry to be one of many owned by another debugging information entry. This makes it possible to
describe, for example, the static block structure within a source file, show the members of a
structure, union, or class, and associate declarations with source files or source files with shared
objects.

The ownership relation of debugging information entries is achieved naturally because the
debugging information is represented as a tree. The nodes of the tree are the debugging
information entries themselves. The child entries of any node are exactly those debugging
information entries owned by that node.1

The tree itself is represented by flattening it in prefix order. Each debugging information entry is
defined either to have child entries or not to have child entries (see section 7.5.3). If an entry is
defined not to have children, the next physically succeeding entry is the sibling of the prior entry.
If an entry is defined to have children, the next physically succeeding entry is the first child of the
prior entry. Additional children of the parent entry are represented as siblings of the first child. A
chain of sibling entries is terminated by a null entry.

In cases where a producer of debugging information feels that it will be important for consumers
of that information to quickly scan chains of sibling entries, ignoring the children of individual
siblings, that producer may attach an AT_sibling attribute to any debugging information entry.
The value of this attribute is a reference to the sibling entry of the entry to which the attribute is
attached.

2.4 Location Descriptions

The debugging information must provide consumers a way to find the location of program
variables, determine the bounds of dynamic arrays and strings and possibly to find the base
address of a subroutine’s stack frame or the return address of a subroutine. Furthermore, to
meet the needs of recent computer architectures and optimization techniques, the debugging
information must be able to describe the location of an object whose location changes over the
object’s lifetime.

1. While the ownership relation of the debugging information entries is represented as a tree, other relations among
the entries exist, for example, a pointer from an entry representing a variable to another entry representing the type
of that variable. If all such relations are taken into account, the debugging entries form a graph, not a tree.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 7
Industry Review Draft

DWARF Debugging Information Format

Information about the location of program objects is provided by location descriptions. Location
descriptions can be either of two forms:

1. Location expressions which are a language independent representation of addressing rules
of arbitrary complexity built from a few basic building blocks, or operations. They are
sufficient for describing the location of any object as long as its lifetime is either static or
the same as the lexical block that owns it, and it does not move throughout its lifetime.

2. Location lists which are used to describe objects that have a limited lifetime or change their
location throughout their lifetime. Location lists are more completely described below.

The two forms are distinguished in a context sensitive manner. As the value of an attribute, a
location expression is encoded as a block and a location list is encoded as a constant offset into a
location list table.

Note: The Version 1 concept of "location descriptions" was replaced in Version 2 with this new
abstraction because it is denser and more descriptive.

2.4.1 Location Expressions

A location expression consists of zero or more location operations. An expression with zero
operations is used to denote an object that is present in the source code but not present in the
object code (perhaps because of optimization). The location operations fall into two categories,
register names and addressing operations. Register names always appear alone and indicate that
the referred object is contained inside a particular register. Addressing operations are memory
address computation rules. All location operations are encoded as a stream of opcodes that are
each followed by zero or more literal operands. The number of operands is determined by the
opcode.

2.4.2 Register Name Operators

The following operations can be used to name a register.

Note that the register number represents a DWARF specific mapping of numbers onto the actual
registers of a given architecture. The mapping should be chosen to gain optimal density and
should be shared by all users of a given architecture. The Programming Languages SIG
recommends that this mapping be defined by the ABI2 authoring committee for each architecture.

1. DW_OP_reg0, DW_OP_reg1, ..., DW_OP_reg31
The DW_OP_regn operations encode the names of up to 32 registers, numbered from 0
through 31, inclusive. The object addressed is in register n.

2. DW_OP_regx
The DW_OP_regx operation has a single unsigned LEB128 literal operand that encodes
the name of a register.

2. System V Application Binary Interface, consisting of the generic interface and processor supplements for each
target architecture.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 8
Industry Review Draft

DWARF Debugging Information Format

2.4.3 Addressing Operations

Each addressing operation represents a postfix operation on a simple stack machine. Each
element of the stack is the size of an address on the target machine. The value on the top of the
stack after ‘‘executing’’ the location expression is taken to be the result (the address of the object,
or the value of the array bound, or the length of a dynamic string). In the case of locations used
for structure members, the computation assumes that the base address of the containing structure
has been pushed on the stack before evaluation of the addressing operation.

2.4.3.1 Literal Encodings

The following operations all push a value onto the addressing stack.

1. DW_OP_lit0, DW_OP_lit1, ..., DW_OP_lit31
The DW_OP_litn operations encode the unsigned literal values from 0 through 31,
inclusive.

2. DW_OP_addr
The DW_OP_addr operation has a single operand that encodes a machine address and
whose size is the size of an address on the target machine.

3. DW_OP_const1u
The single operand of the DW_OP_const1u operation provides a 1-byte unsigned integer
constant.

4. DW_OP_const1s
The single operand of the DW_OP_const1s operation provides a 1-byte signed integer
constant.

5. DW_OP_const2u
The single operand of the DW_OP_const2u operation provides a 2-byte unsigned integer
constant.

6. DW_OP_const2s
The single operand of the DW_OP_const2s operation provides a 2-byte signed integer
constant.

7. DW_OP_const4u
The single operand of the DW_OP_const4u operation provides a 4-byte unsigned integer
constant.

8. DW_OP_const4s
The single operand of the DW_OP_const4s operation provides a 4-byte signed integer
constant.

9. DW_OP_const8u
The single operand of the DW_OP_const8u operation provides an 8-byte unsigned
integer constant.

10. DW_OP_const8s
The single operand of the DW_OP_const8s operation provides an 8-byte signed integer
constant.

11. DW_OP_constu
The single operand of the DW_OP_constu operation provides an unsigned LEB128
integer constant.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 9
Industry Review Draft

DWARF Debugging Information Format

12. DW_OP_consts
The single operand of the DW_OP_consts operation provides a signed LEB128 integer
constant.

2.4.3.2 Register Based Addressing

The following operations push a value onto the stack that is the result of adding the contents of a
register with a given signed offset.

1. DW_OP_fbreg
The DW_OP_fbreg operation provides a signed LEB128 offset from the address
specified by the location descriptor in the DW_AT_frame_base attribute of the current
function. (This is typically a "stack pointer" register plus or minus some offset. On more
sophisticated systems it might be a location list that adjusts the offset according to changes
in the stack pointer as the PC changes.)

2. DW_OP_breg0, DW_OP_breg1, ..., DW_OP_breg31
The single operand of the DW_OP_bregn operations provides a signed LEB128 offset
from the specified register.

3. DW_OP_bregx
The DW_OP_bregx operation has two operands: a signed LEB128 offset from the
specified register which is defined with an unsigned LEB128 number.

2.4.3.3 Stack Operations

The following operations manipulate the ‘‘location stack.’’ Location operations that index the
location stack assume that the top of the stack (most recently added entry) has index 0.

1. DW_OP_dup
The DW_OP_dup operation duplicates the value at the top of the location stack.

2. DW_OP_drop
The DW_OP_drop operation pops the value at the top of the stack.

3. DW_OP_pick
The single operand of the DW_OP_pick operation provides a 1-byte index. The stack
entry with the specified index (0 through 255, inclusive) is pushed on the stack.

4. DW_OP_over
The DW_OP_over operation duplicates the entry currently second in the stack at the top of
the stack. This is equivalent to an DW_OP_pick operation, with index 1.

5. DW_OP_swap
The DW_OP_swap operation swaps the top two stack entries. The entry at the top of the
stack becomes the second stack entry, and the second entry becomes the top of the stack.

6. DW_OP_rot
The DW_OP_rot operation rotates the first three stack entries. The entry at the top of the
stack becomes the third stack entry, the second entry becomes the top of the stack, and the
third entry becomes the second entry.

7. DW_OP_deref
The DW_OP_deref operation pops the top stack entry and treats it as an address. The
value retrieved from that address is pushed. The size of the data retrieved from the
dereferenced address is the size of an address on the target machine.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 10
Industry Review Draft

DWARF Debugging Information Format

8. DW_OP_deref_size
The DW_OP_deref_size operation behaves like the DW_OP_deref operation: it pops
the top stack entry and treats it as an address. The value retrieved from that address is
pushed. In the DW_OP_deref_size operation, however, the size in bytes of the data
retrieved from the dereferenced address is specified by the single operand. This operand is
a 1-byte unsigned integral constant whose value may not be larger than the size of an
address on the target machine. The data retrieved is zero extended to the size of an address
on the target machine before being pushed on the expression stack.

9. DW_OP_xderef
The DW_OP_xderef operation provides an extended dereference mechanism. The entry
at the top of the stack is treated as an address. The second stack entry is treated as an
‘‘address space identifier’’ for those architectures that support multiple address spaces. The
top two stack elements are popped, a data item is retrieved through an implementation-
defined address calculation and pushed as the new stack top. The size of the data retrieved
from the dereferenced address is the size of an address on the target machine.

10. DW_OP_xderef_size
The DW_OP_xderef_size operation behaves like the DW_OP_xderef operation: the
entry at the top of the stack is treated as an address. The second stack entry is treated as an
‘‘address space identifier’’ for those architectures that support multiple address spaces. The
top two stack elements are popped, a data item is retrieved through an implementation-
defined address calculation and pushed as the new stack top. In the
DW_OP_xderef_size operation, however, the size in bytes of the data retrieved from
the dereferenced address is specified by the single operand. This operand is a 1-byte
unsigned integral constant whose value may not be larger than the size of an address on the
target machine. The data retrieved is zero extended to the size of an address on the target
machine before being pushed on the expression stack.

2.4.3.4 Arithmetic and Logical Operations

The following provide arithmetic and logical operations. The arithmetic operations perform
‘‘addressing arithmetic,’’ that is, unsigned arithmetic that wraps on an address-sized boundary.
The operations do not cause an exception on overflow.

1. DW_OP_abs
The DW_OP_abs operation pops the top stack entry and pushes its absolute value.

2. DW_OP_and
The DW_OP_and operation pops the top two stack values, performs a bitwise and
operation on the two, and pushes the result.

3. DW_OP_div
The DW_OP_div operation pops the top two stack values, divides the former second entry
by the former top of the stack using signed division, and pushes the result.

4. DW_OP_minus
The DW_OP_minus operation pops the top two stack values, subtracts the former top of
the stack from the former second entry, and pushes the result.

5. DW_OP_mod
The DW_OP_mod operation pops the top two stack values and pushes the result of the
calculation: former second stack entry modulo the former top of the stack.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 11
Industry Review Draft

DWARF Debugging Information Format

6. DW_OP_mul
The DW_OP_mul operation pops the top two stack entries, multiplies them together, and
pushes the result.

7. DW_OP_neg
The DW_OP_neg operation pops the top stack entry, and pushes its negation.

8. DW_OP_not
The DW_OP_not operation pops the top stack entry, and pushes its bitwise complement.

9. DW_OP_or
The DW_OP_or operation pops the top two stack entries, performs a bitwise or operation
on the two, and pushes the result.

10. DW_OP_plus
The DW_OP_plus operation pops the top two stack entries, adds them together, and
pushes the result.

11. DW_OP_plus_uconst
The DW_OP_plus_uconst operation pops the top stack entry, adds it to the unsigned
LEB128 constant operand and pushes the result. This operation is supplied specifically to
be able to encode more field offsets in two bytes than can be done with "DW_OP_litn
DW_OP_add".

12. DW_OP_shl
The DW_OP_shl operation pops the top two stack entries, shifts the former second entry
left by the number of bits specified by the former top of the stack, and pushes the result.

13. DW_OP_shr
The DW_OP_shr operation pops the top two stack entries, shifts the former second entry
right (logically) by the number of bits specified by the former top of the stack, and pushes
the result.

14. DW_OP_shra
The DW_OP_shra operation pops the top two stack entries, shifts the former second entry
right (arithmetically) by the number of bits specified by the former top of the stack, and
pushes the result.

15. DW_OP_xor
The DW_OP_xor operation pops the top two stack entries, performs the logical exclusive-
or operation on the two, and pushes the result.

2.4.3.5 Control Flow Operations

The following operations provide simple control of the flow of a location expression.

1. Relational operators
The six relational operators each pops the top two stack values, compares the former top of
the stack with the former second entry, and pushes the constant value 1 onto the stack if the
result of the operation is true or the constant value 0 if the result of the operation is false.
The comparisons are done as signed operations. The six operators are DW_OP_le (less
than or equal to), DW_OP_ge (greater than or equal to), DW_OP_eq (equal to), DW_OP_lt
(less than), DW_OP_gt (greater than) and DW_OP_ne (not equal to).

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 12
Industry Review Draft

DWARF Debugging Information Format

2. DW_OP_skip
DW_OP_skip is an unconditional branch. Its single operand is a 2-byte signed integer
constant. The 2-byte constant is the number of bytes of the location expression to skip
from the current operation, beginning after the 2-byte constant.

3. DW_OP_bra
DW_OP_bra is a conditional branch. Its single operand is a 2-byte signed integer constant.
This operation pops the top of stack. If the value popped is not the constant 0, the 2-byte
constant operand is the number of bytes of the location expression to skip from the current
operation, beginning after the 2-byte constant.

2.4.3.6 Special Operations

There are two special operations currently defined:

1. DW_OP_piece
Many compilers store a single variable in sets of registers, or store a variable partially in
memory and partially in registers. DW_OP_piece provides a way of describing how large
a part of a variable a particular addressing expression refers to.

DW_OP_piece takes a single argument which is an unsigned LEB128 number. The
number describes the size in bytes of the piece of the object referenced by the addressing
expression whose result is at the top of the stack.

2. DW_OP_nop
The DW_OP_nop operation is a place holder. It has no effect on the location stack or any
of its values.

2.4.4 Sample Stack Operations

The stack operations defined in section 2.4.3.3 are fairly conventional, but the following
examples illustrate their behavior graphically.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 13
Industry Review Draft

DWARF Debugging Information Format

_ __
Before Operation After_ __
0 17 DW_OP_dup 0 17
1 29 1 17
2 1000 2 29

3 1000_ __
0 17 DW_OP_drop 0 29
1 29 1 1000
2 1000_ __
0 17 DW_OP_pick 2 0 1000
1 29 1 17
2 1000 2 29

3 1000_ __
0 17 DW_OP_over 0 29
1 29 1 17
2 1000 2 29

3 1000_ __
0 17 DW_OP_swap 0 29
1 29 1 17
2 1000 2 1000_ __
0 17 DW_OP_rot 0 29
1 29 1 1000
2 1000 2 17_ __

2.4.5 Example Location Expressions

The addressing expression represented by a location expression, if evaluated, generates the
runtime address of the value of a symbol except where the DW_OP_regn, or DW_OP_regx
operations are used.

Here are some examples of how location operations are used to form location expressions:

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 14
Industry Review Draft

DWARF Debugging Information Format

DW_OP_reg3
The value is in register 3.

DW_OP_regx 54
The value is in register 54.

DW_OP_addr 0x80d0045c
The value of a static variable is
at machine address 0x80d0045c.

DW_OP_breg11 44
Add 44 to the value in
register 11 to get the address of an
automatic variable instance.

DW_OP_fbreg -50
Given an DW_AT_frame_base value of
"OPBREG31 64," this example
computes the address of a local variable
that is -50 bytes from a logical frame
pointer that is computed by adding
64 to the current stack pointer (register 31).

DW_OP_bregx 54 32 DW_OP_deref
A call-by-reference parameter
whose address is in the
word 32 bytes from where register
54 points.

DW_OP_plus_uconst 4
A structure member is four bytes
from the start of the structure
instance. The base address is
assumed to be already on the stack.

DW_OP_reg3 DW_OP_piece 4 DW_OP_reg10 DW_OP_piece 2
A variable whose first four bytes reside
in register 3 and whose next two bytes
reside in register 10.

2.4.6 Location Lists

Location lists are used in place of location expressions whenever the object whose location is
being described can change location during its lifetime. Location lists are contained in a separate
object file section called .debug_loc. A location list is indicated by a location attribute
whose value is represented as a constant offset from the beginning of the .debug_loc section
to the first byte of the list for the object in question.

Each entry in a location list consists of:

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 15
Industry Review Draft

DWARF Debugging Information Format

1. A beginning address. This address is relative to the base address of the compilation unit
referencing this location list. It marks the beginning of the address range over which the
location is valid.

2. An ending address, again relative to the base address of the compilation unit referencing
this location list. It marks the first address past the end of the address range over which the
location is valid.

3. A location expression describing the location of the object over the range specified by the
beginning and end addresses.

Address ranges may overlap. When they do, they describe a situation in which an object exists
simultaneously in more than one place. If all of the address ranges in a given location list do not
collectively cover the entire range over which the object in question is defined, it is assumed that
the object is not available for the portion of the range that is not covered.

The end of any given location list is marked by a 0 for the beginning address and a 0 for the end
address; no location description is present. A location list containing only such a 0 entry
describes an object that exists in the source code but not in the executable program.

2.5 Types of Declarations

Any debugging information entry describing a declaration that has a type has a DW_AT_type
attribute, whose value is a reference to another debugging information entry. The entry
referenced may describe a base type, that is, a type that is not defined in terms of other data types,
or it may describe a user-defined type, such as an array, structure or enumeration. Alternatively,
the entry referenced may describe a type modifier: constant, packed, pointer, reference or volatile,
which in turn will reference another entry describing a type or type modifier (using a
DW_AT_type attribute of its own). See section 5 for descriptions of the entries describing base
types, user-defined types and type modifiers.

2.6 Accessibility of Declarations

Some languages, notably C++ and Ada, have the concept of the accessibility of an object or of
some other program entity. The accessibility specifies which classes of other program objects are
permitted access to the object in question.

The accessibility of a declaration is represented by a DW_AT_accessibility attribute, whose
value is a constant drawn from the set of codes listed in Figure 3.

_ ________________________
DW_ACCESS_public
DW_ACCESS_private
DW_ACCESS_protected_ ________________________

Figure 3. Accessibility codes

2.7 Visibility of Declarations

Modula2 has the concept of the visibility of a declaration. The visibility specifies which
declarations are to be visible outside of the module in which they are declared.

The visibility of a declaration is represented by a DW_AT_visibility attribute, whose value
is a constant drawn from the set of codes listed in Figure 4.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 16
Industry Review Draft

DWARF Debugging Information Format

_ _____________________
DW_VIS_local
DW_VIS_exported
DW_VIS_qualified_ _____________________

Figure 4. Visibility codes

2.8 Virtuality of Declarations

C++ provides for virtual and pure virtual structure or class member functions and for virtual
base classes.

The virtuality of a declaration is represented by a DW_AT_virtuality attribute, whose value
is a constant drawn from the set of codes listed in Figure 5.

_ _________________________________
DW_VIRTUALITY_none
DW_VIRTUALITY_virtual
DW_VIRTUALITY_pure_virtual_ _________________________________

Figure 5. Virtuality codes

2.9 Artificial Entries

A compiler may wish to generate debugging information entries for objects or types that were not
actually declared in the source of the application. An example is a formal parameter entry to
represent the hidden this parameter that most C++ implementations pass as the first argument
to non-static member functions.

Any debugging information entry representing the declaration of an object or type artificially
generated by a compiler and not explicitly declared by the source program may have a
DW_AT_artificial attribute. The value of this attribute is a flag.

2.10 Target-Specific Addressing Information

In some systems, addresses are specified as offsets within a given segment rather than as
locations within a single flat address space.

Any debugging information entry that contains a description of the location of an object or
subroutine may have a DW_AT_segment attribute, whose value is a location description. The
description evaluates to the segment value of the item being described. If the entry containing the
DW_AT_segment attribute has a DW_AT_low_pc or DW_AT_high_pc attribute, or a
location description that evaluates to an address, then those values represent the offset portion of
the address within the segment specified by DW_AT_segment.

If an entry has no DW_AT_segment attribute, it inherits the segment value from its parent entry.
If none of the entries in the chain of parents for this entry back to its containing compilation unit
entry have DW_AT_segment attributes, then the entry is assumed to exist within a flat address
space. Similarly, if the entry has a DW_AT_segment attribute containing an empty location
description, that entry is assumed to exist within a flat address space.

Some systems support different classes of addresses. The address class may affect the way a
pointer is dereferenced or the way a subroutine is called.

Any debugging information entry representing a pointer or reference type or a subroutine or
subroutine type may have a DW_AT_address_class attribute, whose value is a constant. The
set of permissible values is specific to each target architecture. The value DW_ADDR_none,
however, is common to all encodings, and means that no address class has been specified.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 17
Industry Review Draft

DWARF Debugging Information Format

For example, the Intel386 processor might use the following values:
_ __
Name Value Meaning_ __
DW_ADDR_none 0 no class specified
DW_ADDR_near16 1 16-bit offset, no segment
DW_ADDR_far16 2 16-bit offset, 16-bit segment
DW_ADDR_huge16 3 16-bit offset, 16-bit segment
DW_ADDR_near32 4 32-bit offset, no segment
DW_ADDR_far32 5 32-bit offset, 16-bit segment_ __

Figure 6. Example address class codes

2.11 Non-Defining Declarations

A debugging information entry representing a program object or type typically represents the
defining declaration of that object or type. In certain contexts, however, a debugger might need
information about a declaration of a subroutine, object or type that is not also a definition to
evaluate an expression correctly.

As an example, consider the following fragment of C code:

void myfunc()
{

int x;
{

extern float x;
g(x);

}
}

ANSI-C scoping rules require that the value of the variable x passed to the function g is the
value of the global variable x rather than of the local version.

Debugging information entries that represent non-defining declarations of a program object or
type have a DW_AT_declaration attribute, whose value is a flag.

2.12 Declaration Coordinates

It is sometimes useful in a debugger to be able to associate a declaration with its occurrence in
the program source.

Any debugging information entry representing the declaration of an object, module, subprogram
or type may have DW_AT_decl_file, DW_AT_decl_line and DW_AT_decl_column
attributes, each of whose value is a constant.

The value of the DW_AT_decl_file attribute corresponds to a file number from the statement
information table for the compilation unit containing this debugging information entry and
represents the source file in which the declaration appeared (see section 6.2). The value 0
indicates that no source file has been specified.

The value of the DW_AT_decl_line attribute represents the source line number at which the
first character of the identifier of the declared object appears. The value 0 indicates that no source
line has been specified.

The value of the DW_AT_decl_column attribute represents the source column number at
which the first character of the identifier of the declared object appears. The value 0 indicates that

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 18
Industry Review Draft

DWARF Debugging Information Format

no column has been specified.

2.13 Identifier Names

Any debugging information entry representing a program entity that has been given a name may
have a DW_AT_name attribute, whose value is a string representing the name as it appears in the
source program. A debugging information entry containing no name attribute, or containing a
name attribute whose value consists of a name containing a single null byte, represents a program
entity for which no name was given in the source.

Note that since the names of program objects described by DWARF are the names as they appear
in the source program, implementations of language translators that use some form of mangled
name (as do many implementations of C++) should use the unmangled form of the name in the
DWARF DW_AT_name attribute, including the keyword operator, if present. Sequences of
multiple whitespace characters may be compressed.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 19
Industry Review Draft

DWARF Debugging Information Format

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 20
Industry Review Draft

DWARF Debugging Information Format

3. PROGRAM SCOPE ENTRIES

This section describes debugging information entries that relate to different levels of program
scope: compilation unit, module, subprogram, and so on. These entries may be thought of as
bounded by ranges of text addresses within the program.

3.1 Compilation Unit Entries

An object file may be derived from one or more compilation units. Each such compilation unit
will be described by a debugging information entry with the tag DW_TAG_compile_unit.

A compilation unit typically represents the text and data contributed to an executable by a single
relocatable object file. It may be derived from several source files, including pre-processed
‘‘include files.’’

The compilation unit entry may have the following attributes:

1. A DW_AT_low_pc attribute whose value is the relocated address of the first machine
instruction generated for that compilation unit.

2. A DW_AT_high_pc attribute whose value is the relocated address of the first location
past the last machine instruction generated for that compilation unit.

The address may be beyond the last valid instruction in the executable, of course, for this
and other similar attributes.

The presence of low and high pc attributes in a compilation unit entry imply that the code
generated for that compilation unit is contiguous and exists totally within the boundaries
specified by those two attributes. If that is not the case, no low and high pc attributes
should be produced.

3. A DW_AT_name attribute whose value is a null-terminated string containing the full or
relative path name of the primary source file from which the compilation unit was derived.

4. A DW_AT_language attribute whose constant value is a code indicating the source
language of the compilation unit. The set of language names and their meanings are given
in Figure 7.

_ __
DW_LANG_C Non-ANSI C, such as K&R
DW_LANG_C89 ISO/ANSI C
DW_LANG_C_plus_plus C++
DW_LANG_Fortran77 FORTRAN77
DW_LANG_Fortran90 Fortran90
DW_LANG_Modula2 Modula2
DW_LANG_Pascal83 ISO/ANSI Pascal_ __

Figure 7. Language names

5. A DW_AT_stmt_list attribute whose value is a reference to line number information for
this compilation unit.

This information is placed in a separate object file section from the debugging information
entries themselves. The value of the statement list attribute is the offset in the
.debug_line section of the first byte of the line number information for this compilation
unit. See section 6.2.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 21
Industry Review Draft

DWARF Debugging Information Format

6. A DW_AT_macro_info attribute whose value is a reference to the macro information for
this compilation unit.

This information is placed in a separate object file section from the debugging information
entries themselves. The value of the macro information attribute is the offset in the
.debug_macinfo section of the first byte of the macro information for this compilation
unit. See section 6.3.

7. A DW_AT_comp_dir attribute whose value is a null-terminated string containing the
current working directory of the compilation command that produced this compilation unit
in whatever form makes sense for the host system.

The suggested form for the value of the DW_AT_comp_dir attribute on UNIX systems is
‘‘hostname:pathname’’. If no hostname is available, the suggested form is ‘‘:pathname’’.

8. A DW_AT_producer attribute whose value is a null-terminated string containing
information about the compiler that produced the compilation unit. The actual contents of
the string will be specific to each producer, but should begin with the name of the compiler
vendor or some other identifying character sequence that should avoid confusion with other
producer values.

9. A DW_AT_identifier_case attribute whose constant value is a code describing the
treatment of identifiers within this compilation unit. The set of identifier case codes is
given in Figure 8.

_ ____________________________
DW_ID_case_sensitive
DW_ID_up_case
DW_ID_down_case
DW_ID_case_insensitive_ ____________________________

Figure 8. Identifier case codes

DW_ID_case_sensitive is the default for all compilation units that do not have this
attribute. It indicates that names given as the values of DW_AT_name attributes in
debugging information entries for the compilation unit reflect the names as they appear in
the source program. The debugger should be sensitive to the case of identifier names when
doing identifier lookups.

DW_ID_up_case means that the producer of the debugging information for this
compilation unit converted all source names to upper case. The values of the name
attributes may not reflect the names as they appear in the source program. The debugger
should convert all names to upper case when doing lookups.

DW_ID_down_case means that the producer of the debugging information for this
compilation unit converted all source names to lower case. The values of the name
attributes may not reflect the names as they appear in the source program. The debugger
should convert all names to lower case when doing lookups.

DW_ID_case_insensitive means that the values of the name attributes reflect the
names as they appear in the source program but that a case insensitive lookup should be
used to access those names.

10. A DW_AT_base_types attribute whose value is a reference. This attribute points to a
debugging information entry representing another compilation unit. It may be used to
specify the compilation unit containing the base type entries used by entries in the current

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 22
Industry Review Draft

DWARF Debugging Information Format

compilation unit (see section 5.1).

This attribute provides a consumer a way to find the definition of base types for a
compilation unit that does not itself contain such definitions. This allows a consumer, for
example, to interpret a type conversion to a base type correctly.

A compilation unit entry owns debugging information entries that represent the declarations made
in the corresponding compilation unit.

3.2 Module Entries

Several languages have the concept of a ‘‘module.’’

A module is represented by a debugging information entry with the tag DW_TAG_module.
Module entries may own other debugging information entries describing program entities whose
declaration scopes end at the end of the module itself.

If the module has a name, the module entry has a DW_AT_name attribute whose value is a null-
terminated string containing the module name as it appears in the source program.

If the module contains initialization code, the module entry has a DW_AT_low_pc attribute
whose value is the relocated address of the first machine instruction generated for that
initialization code. It also has a DW_AT_high_pc attribute whose value is the relocated address
of the first location past the last machine instruction generated for the initialization code.

If the module has been assigned a priority, it may have a DW_AT_priority attribute. The
value of this attribute is a reference to another debugging information entry describing a variable
with a constant value. The value of this variable is the actual constant value of the module’s
priority, represented as it would be on the target architecture.

A Modula2 definition module may be represented by a module entry containing a
DW_AT_declaration attribute.

3.3 Subroutine and Entry Point Entries

The following tags exist to describe debugging information entries for subroutines and entry
points:

DW_TAG_subprogram A global or file static subroutine or function.

DW_TAG_inlined_subroutine A particular inlined instance of a subroutine or function.

DW_TAG_entry_point A Fortran entry point.

3.3.1 General Subroutine and Entry Point Information

The subroutine or entry point entry has a DW_AT_name attribute whose value is a null-
terminated string containing the subroutine or entry point name as it appears in the source
program.

If the name of the subroutine described by an entry with the tag DW_TAG_subprogram is
visible outside of its containing compilation unit, that entry has a DW_AT_external attribute,
whose value is a flag.

Additional attributes for functions that are members of a class or structure are described in
section 5.5.5.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 23
Industry Review Draft

DWARF Debugging Information Format

A common debugger feature is to allow the debugger user to call a subroutine within the subject
program. In certain cases, however, the generated code for a subroutine will not obey the
standard calling conventions for the target architecture and will therefore not be safe to call from
within a debugger.

A subroutine entry may contain a DW_AT_calling_convention attribute, whose value is a
constant. If this attribute is not present, or its value is the constant DW_CC_normal, then the
subroutine may be safely called by obeying the ‘‘standard’’ calling conventions of the target
architecture. If the value of the calling convention attribute is the constant DW_CC_nocall, the
subroutine does not obey standard calling conventions, and it may not be safe for the debugger to
call this subroutine.

If the semantics of the language of the compilation unit containing the subroutine entry
distinguishes between ordinary subroutines and subroutines that can serve as the ‘‘main
program,’’ that is, subroutines that cannot be called directly following the ordinary calling
conventions, then the debugging information entry for such a subroutine may have a calling
convention attribute whose value is the constant DW_CC_program.

The DW_CC_program value is intended to support Fortran main programs. It is not intended
as a way of finding the entry address for the program.

3.3.2 Subroutine and Entry Point Return Types

If the subroutine or entry point is a function that returns a value, then its debugging information
entry has a DW_AT_type attribute to denote the type returned by that function.

Debugging information entries for C void functions should not have an attribute for the return
type.

In ANSI-C there is a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have a
DW_AT_prototyped attribute, whose value is a flag.

3.3.3 Subroutine and Entry Point Locations

A subroutine entry has a DW_AT_low_pc attribute whose value is the relocated address of the
first machine instruction generated for the subroutine. It also has a DW_AT_high_pc attribute
whose value is the relocated address of the first location past the last machine instruction
generated for the subroutine.

Note that for the low and high pc attributes to have meaning, DWARF makes the assumption that
the code for a single subroutine is allocated in a single contiguous block of memory.

An entry point has a DW_AT_low_pc attribute whose value is the relocated address of the first
machine instruction generated for the entry point.

Subroutines and entry points may also have DW_AT_segment and DW_AT_address_class
attributes, as appropriate, to specify which segments the code for the subroutine resides in and the
addressing mode to be used in calling that subroutine.

A subroutine entry representing a subroutine declaration that is not also a definition does not have
low and high pc attributes.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 24
Industry Review Draft

DWARF Debugging Information Format

3.3.4 Declarations Owned by Subroutines and Entry Points

The declarations enclosed by a subroutine or entry point are represented by debugging
information entries that are owned by the subroutine or entry point entry. Entries representing the
formal parameters of the subroutine or entry point appear in the same order as the corresponding
declarations in the source program.

There is no ordering requirement on entries for declarations that are children of subroutine or
entry point entries but that do not represent formal parameters. The formal parameter entries
may be interspersed with other entries used by formal parameter entries, such as type entries.

The unspecified parameters of a variable parameter list are represented by a debugging
information entry with the tag DW_TAG_unspecified_parameters.

The entry for a subroutine or entry point that includes a Fortran common block has a child entry
with the tag DW_TAG_common_inclusion. The common inclusion entry has a
DW_AT_common_reference attribute whose value is a reference to the debugging entry for
the common block being included (see section 4.2).

3.3.5 Low-Level Information

A subroutine or entry point entry may have a DW_AT_return_addr attribute, whose value is a
location description. The location calculated is the place where the return address for the
subroutine or entry point is stored.

A subroutine or entry point entry may also have a DW_AT_frame_base attribute, whose value
is a location description that computes the ‘‘frame base’’ for the subroutine or entry point.

The frame base for a procedure is typically an address fixed relative to the first unit of storage
allocated for the procedure’s stack frame. The DW_AT_frame_base attribute can be used in
several ways:

1. In procedures that need location lists to locate local variables, the DW_AT_frame_base
can hold the needed location list, while all variables’ location descriptions can be simpler
location expressions involving the frame base.

2. It can be used as a key in resolving "up-level" addressing with nested routines. (See
DW_AT_static_link, below)

Some languages support nested subroutines. In such languages, it is possible to reference the
local variables of an outer subroutine from within an inner subroutine. The
DW_AT_static_link and DW_AT_frame_base attributes allow debuggers to support this
same kind of referencing.

If a subroutine or entry point is nested, it may have a DW_AT_static_link attribute, whose
value is a location description that computes the frame base of the relevant instance of the
subroutine that immediately encloses the subroutine or entry point.

In the context of supporting nested subroutines, the DW_AT_frame_base attribute value should
obey the following constraints:

1. It should compute a value that does not change during the life of the procedure, and

2. The computed value should be unique among instances of the same subroutine. (For
typical DW_AT_frame_base use, this means that a recursive subroutine’s stack frame
must have non-zero size.)

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 25
Industry Review Draft

DWARF Debugging Information Format

If a debugger is attempting to resolve an up-level reference to a variable, it uses the nesting
structure of DWARF to determine which subroutine is the lexical parent and the
DW_AT_static_link value to identify the appropriate active frame of the parent. It can then
attempt to find the reference within the context of the parent.

3.3.6 Types Thrown by Exceptions

In C++ a subroutine may declare a set of types for which that subroutine may generate or
‘‘throw’’ an exception.

If a subroutine explicitly declares that it may throw an exception for one or more types, each such
type is represented by a debugging information entry with the tag DW_TAG_thrown_type.
Each such entry is a child of the entry representing the subroutine that may throw this type. All
thrown type entries should follow all entries representing the formal parameters of the subroutine
and precede all entries representing the local variables or lexical blocks contained in the
subroutine. Each thrown type entry contains a DW_AT_type attribute, whose value is a
reference to an entry describing the type of the exception that may be thrown.

3.3.7 Function Template Instantiations

In C++ a function template is a generic definition of a function that is instantiated differently
when called with values of different types. DWARF does not represent the generic template
definition, but does represent each instantiation.

A template instantiation is represented by a debugging information entry with the tag
DW_TAG_subprogram. With three exceptions, such an entry will contain the same attributes
and have the same types of child entries as would an entry for a subroutine defined explicitly
using the instantiation types. The exceptions are:

1. Each formal parameterized type declaration appearing in the template definition is
represented by a debugging information entry with the tag
DW_TAG_template_type_parameter. Each such entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the name of the formal type
parameter as it appears in the source program. The template type parameter entry also has a
DW_AT_type attribute describing the actual type by which the formal is replaced for this
instantiation. All template type parameter entries should appear before the entries
describing the instantiated formal parameters to the function.

2. If the compiler has generated a special compilation unit to hold the template instantiation
and that compilation unit has a different name from the compilation unit containing the
template definition, the name attribute for the debugging entry representing that
compilation unit should be empty or omitted.

3. If the subprogram entry representing the template instantiation or any of its child entries
contain declaration coordinate attributes, those attributes should refer to the source for the
template definition, not to any source generated artificially by the compiler for this
instantiation.

3.3.8 Inline Subroutines

A declaration or a definition of an inlinable subroutine is represented by a debugging information
entry with the tag DW_TAG_subprogram. The entry for a subroutine that is explicitly declared
to be available for inline expansion or that was expanded inline implicitly by the compiler has a
DW_AT_inline attribute whose value is a constant. The set of values for the DW_AT_inline

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 26
Industry Review Draft

DWARF Debugging Information Format

Name Meaning___
DW_INL_not_inlined Not declared inline nor inlined by the compiler
DW_INL_inlined Not declared inline but inlined by the compiler
DW_INL_declared_not_inlined Declared inline but not inlined by the compiler
DW_INL_declared_inlined Declared inline and inlined by the compiler___

Figure 9. Inline codes

attribute is given in Figure 9.

3.3.8.1 Abstract Instances

For the remainder of this discussion, any debugging information entry that is owned (either
directly or indirectly) by a debugging information entry that contains the DW_AT_inline
attribute will be referred to as an ‘‘abstract instance entry.’’ Any subroutine entry that contains a
DW_AT_inline attribute will be known as an ‘‘abstract instance root.’’ Any set of abstract
instance entries that are all children (either directly or indirectly) of some abstract instance root,
together with the root itself, will be known as an ‘‘abstract instance tree.’’

A debugging information entry that is a member of an abstract instance tree should not contain a
DW_AT_high_pc, DW_AT_low_pc, DW_AT_location, DW_AT_return_addr,
DW_AT_start_scope, or DW_AT_segment attribute.

It would not make sense to put these attributes into abstract instance entries since such entries do
not represent actual (concrete) instances and thus do not actually exist at run-time.

The rules for the relative location of entries belonging to abstract instance trees are exactly the
same as for other similar types of entries that are not abstract. Specifically, the rule that requires
that an entry representing a declaration be a direct child of the entry representing the scope of the
declaration applies equally to both abstract and non-abstract entries. Also, the ordering rules for
formal parameter entries, member entries, and so on, all apply regardless of whether or not a
given entry is abstract.

3.3.8.2 Concrete Inlined Instances

Each inline expansion of an inlinable subroutine is represented by a debugging information entry
with the tag DW_TAG_inlined_subroutine. Each such entry should be a direct child of the
entry that represents the scope within which the inlining occurs.

Each inlined subroutine entry contains a DW_AT_low_pc attribute, representing the address of
the first instruction associated with the given inline expansion. Each inlined subroutine entry
also contains a DW_AT_high_pc attribute, representing the address of the first location past the
last instruction associated with the inline expansion.

For the remainder of this discussion, any debugging information entry that is owned (either
directly or indirectly) by a debugging information entry with the tag
DW_TAG_inlined_subroutine will be referred to as a ‘‘concrete inlined instance entry.’’
Any entry that has the tag DW_TAG_inlined_subroutine will be known as a ‘‘concrete
inlined instance root.’’ Any set of concrete inlined instance entries that are all children (either
directly or indirectly) of some concrete inlined instance root, together with the root itself, will be
known as a ‘‘concrete inlined instance tree.’’

Each concrete inlined instance tree is uniquely associated with one (and only one) abstract
instance tree.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 27
Industry Review Draft

DWARF Debugging Information Format

Note, however, that the reverse is not true. Any given abstract instance tree may be associated
with several different concrete inlined instance trees, or may even be associated with zero
concrete inlined instance trees.

Also, each separate entry within a given concrete inlined instance tree is uniquely associated with
one particular entry in the associated abstract instance tree. In other words, there is a one-to-one
mapping from entries in a given concrete inlined instance tree to the entries in the associated
abstract instance tree.

Note, however, that the reverse is not true. A given abstract instance tree that is associated with
a given concrete inlined instance tree may (and quite probably will) contain more entries than the
associated concrete inlined instance tree (see below).

Concrete inlined instance entries do not have most of the attributes (except for DW_AT_low_pc,
DW_AT_high_pc, DW_AT_location, DW_AT_return_addr, DW_AT_start_scope
and DW_AT_segment) that such entries would otherwise normally have. In place of these
omitted attributes, each concrete inlined instance entry has a DW_AT_abstract_origin
attribute that may be used to obtain the missing information (indirectly) from the associated
abstract instance entry. The value of the abstract origin attribute is a reference to the associated
abstract instance entry.

For each pair of entries that are associated via a DW_AT_abstract_origin attribute, both
members of the pair will have the same tag. So, for example, an entry with the tag
DW_TAG_local_variable can only be associated with another entry that also has the tag
DW_TAG_local_variable. The only exception to this rule is that the root of a concrete
instance tree (which must always have the tag DW_TAG_inlined_subroutine) can only be
associated with the root of its associated abstract instance tree (which must have the tag
DW_TAG_subprogram).

In general, the structure and content of any given concrete instance tree will be directly analogous
to the structure and content of its associated abstract instance tree. There are two exceptions to
this general rule however.

1. No entries representing anonymous types are ever made a part of any concrete instance
inlined tree.

2. No entries representing members of structure, union or class types are ever made a part of
any concrete inlined instance tree.

Entries that represent members and anonymous types are omitted from concrete inlined instance
trees because they would simply be redundant duplicates of the corresponding entries in the
associated abstract instance trees. If any entry within a concrete inlined instance tree needs to
refer to an anonymous type that was declared within the scope of the relevant inline function, the
reference should simply refer to the abstract instance entry for the given anonymous type.

If an entry within a concrete inlined instance tree contains attributes describing the declaration
coordinates of that entry, then those attributes should refer to the file, line and column of the
original declaration of the subroutine, not to the point at which it was inlined.

3.3.8.3 Out-of-Line Instances of Inline Subroutines

Under some conditions, compilers may need to generate concrete executable instances of inline
subroutines other than at points where those subroutines are actually called. For the remainder of
this discussion, such concrete instances of inline subroutines will be referred to as ‘‘concrete out-

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 28
Industry Review Draft

DWARF Debugging Information Format

of-line instances.’’

In C++, for example, taking the address of a function declared to be inline can necessitate the
generation of a concrete out-of-line instance of the given function.

The DWARF representation of a concrete out-of-line instance of an inline subroutine is
essentially the same as for a concrete inlined instance of that subroutine (as described in the
preceding section). The representation of such a concrete out-of-line instance makes use of
DW_AT_abstract_origin attributes in exactly the same way as they are used for a concrete
inlined instance (that is, as references to corresponding entries within the associated abstract
instance tree) and, as for concrete instance trees, the entries for anonymous types and for all
members are omitted.

The differences between the DWARF representation of a concrete out-of-line instance of a given
subroutine and the representation of a concrete inlined instance of that same subroutine are as
follows:

1. The root entry for a concrete out-of-line instance of a given inline subroutine has the same
tag as does its associated (abstract) inline subroutine entry (that is, it does not have the tag
DW_TAG_inlined_subroutine).

2. The root entry for a concrete out-of-line instance tree is always directly owned by the same
parent entry that also owns the root entry of the associated abstract instance.

3.4 Lexical Block Entries

A lexical block is a bracketed sequence of source statements that may contain any number of
declarations. In some languages (C and C++) blocks can be nested within other blocks to any
depth.

A lexical block is represented by a debugging information entry with the tag
DW_TAG_lexical_block.

The lexical block entry has a DW_AT_low_pc attribute whose value is the relocated address of
the first machine instruction generated for the lexical block. The lexical block entry also has a
DW_AT_high_pc attribute whose value is the relocated address of the first location past the last
machine instruction generated for the lexical block.

If a name has been given to the lexical block in the source program, then the corresponding
lexical block entry has a DW_AT_name attribute whose value is a null-terminated string
containing the name of the lexical block as it appears in the source program.

This is not the same as a C or C++ label (see below).

The lexical block entry owns debugging information entries that describe the declarations within
that lexical block. There is one such debugging information entry for each local declaration of an
identifier or inner lexical block.

3.5 Label Entries

A label is a way of identifying a source statement. A labeled statement is usually the target of
one or more ‘‘go to’’ statements.

A label is represented by a debugging information entry with the tag DW_TAG_label. The
entry for a label should be owned by the debugging information entry representing the scope
within which the name of the label could be legally referenced within the source program.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 29
Industry Review Draft

DWARF Debugging Information Format

The label entry has a DW_AT_low_pc attribute whose value is the relocated address of the first
machine instruction generated for the statement identified by the label in the source program. The
label entry also has a DW_AT_name attribute whose value is a null-terminated string containing
the name of the label as it appears in the source program.

3.6 With Statement Entries

Both Pascal and Modula support the concept of a ‘‘with’’ statement. The with statement specifies
a sequence of executable statements within which the fields of a record variable may be
referenced, unqualified by the name of the record variable.

A with statement is represented by a debugging information entry with the tag
DW_TAG_with_stmt. A with statement entry has a DW_AT_low_pc attribute whose value is
the relocated address of the first machine instruction generated for the body of the with statement.
A with statement entry also has a DW_AT_high_pc attribute whose value is the relocated
address of the first location after the last machine instruction generated for the body of the
statement.

The with statement entry has a DW_AT_type attribute, denoting the type of record whose fields
may be referenced without full qualification within the body of the statement. It also has a
DW_AT_location attribute, describing how to find the base address of the record object
referenced within the body of the with statement.

3.7 Try and Catch Block Entries

In C++ a lexical block may be designated as a ‘‘catch block.’’ A catch block is an exception
handler that handles exceptions thrown by an immediately preceding ‘‘try block.’’ A catch block
designates the type of the exception that it can handle.

A try block is represented by a debugging information entry with the tag DW_TAG_try_block.
A catch block is represented by a debugging information entry with the tag
DW_TAG_catch_block. Both try and catch block entries contain a DW_AT_low_pc attribute
whose value is the relocated address of the first machine instruction generated for that block.
These entries also contain a DW_AT_high_pc attribute whose value is the relocated address of
the first location past the last machine instruction generated for that block.

Catch block entries have at least one child entry, an entry representing the type of exception
accepted by that catch block. This child entry will have one of the tags
DW_TAG_formal_parameter or DW_TAG_unspecified_parameters, and will have
the same form as other parameter entries.

The first sibling of each try block entry will be a catch block entry.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 30
Industry Review Draft

DWARF Debugging Information Format

4. DATA OBJECT AND OBJECT LIST ENTRIES

This section presents the debugging information entries that describe individual data objects:
variables, parameters and constants, and lists of those objects that may be grouped in a single
declaration, such as a common block.

4.1 Data Object Entries

Program variables, formal parameters and constants are represented by debugging information
entries with the tags DW_TAG_variable, DW_TAG_formal_parameter and
DW_TAG_constant, respectively.

The tag DW_TAG_constant is used for languages that distinguish between variables that may
have constant value and true named constants.

The debugging information entry for a program variable, formal parameter or constant may have
the following attributes:

1. A DW_AT_name attribute whose value is a null-terminated string containing the data
object name as it appears in the source program.

If a variable entry describes a C++ anonymous union, the name attribute is omitted or
consists of a single zero byte.

2. If the name of a variable is visible outside of its enclosing compilation unit, the variable
entry has a DW_AT_external attribute, whose value is a flag.

The definitions of C++ static data members of structures or classes are represented by
variable entries flagged as external. Both file static and local variables in C and C++ are
represented by non-external variable entries.

3. A DW_AT_location attribute, whose value describes the location of a variable or
parameter at run-time.

A data object entry representing a non-defining declaration of the object will not have a
location attribute, and will have the DW_AT_declaration attribute.

In a variable entry representing the definition of the variable (that is, with no
DW_AT_declaration attribute) if no location attribute is present, or if the location
attribute is present but describes a null entry (as described in section 2.4), the variable is
assumed to exist in the source code but not in the executable program (but see number 9,
below).

The location of a variable may be further specified with a DW_AT_segment attribute, if
appropriate.

4. A DW_AT_type attribute describing the type of the variable, constant or formal parameter.

5. If the variable entry represents the defining declaration for a C++ static data member of a
structure, class or union, the entry has a DW_AT_specification attribute, whose value
is a reference to the debugging information entry representing the declaration of this data
member. The referenced entry will be a child of some class, structure or union type entry.

Variable entries containing the DW_AT_specification attribute do not need to
duplicate information provided by the declaration entry referenced by the specification
attribute. In particular, such variable entries do not need to contain attributes for the name
or type of the data member whose definition they represent.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 31
Industry Review Draft

DWARF Debugging Information Format

6. Some languages distinguish between parameters whose value in the calling function can be
modified by the callee (variable parameters), and parameters whose value in the calling
function cannot be modified by the callee (constant parameters).

If a formal parameter entry represents a parameter whose value in the calling function may
be modified by the callee, that entry may have a DW_AT_variable_parameter
attribute, whose value is a flag. The absence of this attribute implies that the parameter’s
value in the calling function cannot be modified by the callee.

7. Fortran90 has the concept of an optional parameter.

If a parameter entry represents an optional parameter, it has a DW_AT_is_optional
attribute, whose value is a flag.

8. A formal parameter entry describing a formal parameter that has a default value may have a
DW_AT_default_value attribute. The value of this attribute is a reference to the
debugging information entry for a variable or subroutine. The default value of the
parameter is the value of the variable (which may be constant) or the value returned by the
subroutine. If the value of the DW_AT_default_value attribute is 0, it means that no
default value has been specified.

9. An entry describing a variable whose value is constant and not represented by an object in
the address space of the program, or an entry describing a named constant, does not have a
location attribute. Such entries have a DW_AT_const_value attribute, whose value may
be a string or any of the constant data or data block forms, as appropriate for the
representation of the variable’s value. The value of this attribute is the actual constant
value of the variable, represented as it would be on the target architecture.

10. If the scope of an object begins sometime after the low pc value for the scope most closely
enclosing the object, the object entry may have a DW_AT_start_scope attribute. The
value of this attribute is the offset in bytes of the beginning of the scope for the object from
the low pc value of the debugging information entry that defines its scope.

The scope of a variable may begin somewhere in the middle of a lexical block in a
language that allows executable code in a block before a variable declaration, or where
one declaration containing initialization code may change the scope of a subsequent
declaration. For example, in the following C code:

float x = 99.99;

int myfunc()
{

float f = x;
float x = 88.99;

return 0;
}

ANSI-C scoping rules require that the value of the variable x assigned to the variable f
in the initialization sequence is the value of the global variable x, rather than the local x,
because the scope of the local variable x only starts after the full declarator for the local
x.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 32
Industry Review Draft

DWARF Debugging Information Format

4.2 Common Block Entries

A Fortran common block may be described by a debugging information entry with the tag
DW_TAG_common_block. The common block entry has a DW_AT_name attribute whose
value is a null-terminated string containing the common block name as it appears in the source
program. It also has a DW_AT_location attribute whose value describes the location of the
beginning of the common block. The common block entry owns debugging information entries
describing the variables contained within the common block.

4.3 Imported Declaration Entries

Some languages support the concept of importing into a given module declarations made in a
different module.

An imported declaration is represented by a debugging information entry with the tag
DW_TAG_imported_declaration. The entry for the imported declaration has a
DW_AT_name attribute whose value is a null-terminated string containing the name of the entity
whose declaration is being imported as it appears in the source program. The imported
declaration entry also has a DW_AT_import attribute, whose value is a reference to the
debugging information entry representing the declaration that is being imported.

4.4 Namelist Entries

At least one language, Fortran90, has the concept of a namelist. A namelist is an ordered list of
the names of some set of declared objects. The namelist object itself may be used as a
replacement for the list of names in various contexts.

A namelist is represented by a debugging information entry with the tag DW_TAG_namelist.
If the namelist itself has a name, the namelist entry has a DW_AT_name attribute, whose value is
a null-terminated string containing the namelist’s name as it appears in the source program.

Each name that is part of the namelist is represented by a debugging information entry with the
tag DW_TAG_namelist_item. Each such entry is a child of the namelist entry, and all of the
namelist item entries for a given namelist are ordered as were the list of names they correspond to
in the source program.

Each namelist item entry contains a DW_AT_namelist_item attribute whose value is a
reference to the debugging information entry representing the declaration of the item whose name
appears in the namelist.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 33
Industry Review Draft

DWARF Debugging Information Format

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 34
Industry Review Draft

DWARF Debugging Information Format

5. TYPE ENTRIES

This section presents the debugging information entries that describe program types: base types,
modified types and user-defined types.

If the scope of the declaration of a named type begins sometime after the low pc value for the
scope most closely enclosing the declaration, the declaration may have a
DW_AT_start_scope attribute. The value of this attribute is the offset in bytes of the
beginning of the scope for the declaration from the low pc value of the debugging information
entry that defines its scope.

5.1 Base Type Entries

A base type is a data type that is not defined in terms of other data types. Each programming
language has a set of base types that are considered to be built into that language.

A base type is represented by a debugging information entry with the tag DW_TAG_base_type.
A base type entry has a DW_AT_name attribute whose value is a null-terminated string
describing the name of the base type as recognized by the programming language of the
compilation unit containing the base type entry.

A base type entry also has a DW_AT_encoding attribute describing how the base type is
encoded and is to be interpreted. The value of this attribute is a constant. The set of values and
their meanings for the DW_AT_encoding attribute is given in Figure 10.

__
Name Meaning__
DW_ATE_address linear machine address
DW_ATE_boolean true or false
DW_ATE_complex_float complex floating-point number
DW_ATE_float floating-point number
DW_ATE_signed signed binary integer
DW_ATE_signed_char signed character
DW_ATE_unsigned unsigned binary integer
DW_ATE_unsigned_char unsigned character__

Figure 10. Encoding attribute values

All encodings assume the representation that is ‘‘normal’’ for the target architecture.

A base type entry has a DW_AT_byte_size attribute, whose value is a constant, describing the
size in bytes of the storage unit used to represent an object of the given type.

If the value of an object of the given type does not fully occupy the storage unit described by the
byte size attribute, the base type entry may have a DW_AT_bit_size attribute and a
DW_AT_bit_offset attribute, both of whose values are constants. The bit size attribute
describes the actual size in bits used to represent a value of the given type. The bit offset attribute
describes the offset in bits of the high order bit of a value of the given type from the high order bit
of the storage unit used to contain that value.

For example, the C type int on a machine that uses 32-bit integers would be represented by a
base type entry with a name attribute whose value was ‘‘int,’’ an encoding attribute whose
value was DW_ATE_signed and a byte size attribute whose value was 4.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 35
Industry Review Draft

DWARF Debugging Information Format

5.2 Type Modifier Entries

A base or user-defined type may be modified in different ways in different languages. A type
modifier is represented in DWARF by a debugging information entry with one of the tags given
in Figure 11.
_ __
Tag Meaning_ __
DW_TAG_const_type C or C++ const qualified type
DW_TAG_packed_type Pascal packed type
DW_TAG_pointer_type The address of the object whose type is being modified
DW_TAG_reference_type A C++ reference to the object whose type is being modified
DW_TAG_volatile_type C or C++ volatile qualified type_ __

Figure 11. Type modifier tags

Each of the type modifier entries has a DW_AT_type attribute, whose value is a reference to a
debugging information entry describing a base type, a user-defined type or another type modifier.

A modified type entry describing a pointer or reference type may have a
DW_AT_address_class attribute to describe how objects having the given pointer or
reference type ought to be dereferenced.

When multiple type modifiers are chained together to modify a base or user-defined type, they are
ordered as if part of a right-associative expression involving the base or user-defined type.

As examples of how type modifiers are ordered, take the following C declarations:

const char * volatile p;
which represents a volatile pointer to a constant character.
This is encoded in DWARF as:
DW_TAG_volatile_type →

DW_TAG_pointer_type →
DW_TAG_const_type →

DW_TAG_base_type

volatile char * const p;
on the other hand, represents a constant pointer
to a volatile character.
This is encoded as:
DW_TAG_const_type →

DW_TAG_pointer_type →
DW_TAG_volatile_type →

DW_TAG_base_type

5.3 Typedef Entries

Any arbitrary type named via a typedef is represented by a debugging information entry with the
tag DW_TAG_typedef. The typedef entry has a DW_AT_name attribute whose value is a null-
terminated string containing the name of the typedef as it appears in the source program. The
typedef entry also contains a DW_AT_type attribute.

If the debugging information entry for a typedef represents a declaration of the type that is not
also a definition, it does not contain a type attribute.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 36
Industry Review Draft

DWARF Debugging Information Format

5.4 Array Type Entries

Many languages share the concept of an ‘‘array,’’ which is a table of components of identical
type.

An array type is represented by a debugging information entry with the tag
DW_TAG_array_type.

If a name has been given to the array type in the source program, then the corresponding array
type entry has a DW_AT_name attribute whose value is a null-terminated string containing the
array type name as it appears in the source program.

The array type entry describing a multidimensional array may have a DW_AT_ordering
attribute whose constant value is interpreted to mean either row-major or column-major ordering
of array elements. The set of values and their meanings for the ordering attribute are listed in
Figure 12. If no ordering attribute is present, the default ordering for the source language (which
is indicated by the DW_AT_language attribute of the enclosing compilation unit entry) is
assumed.

_ _____________________
DW_ORD_col_major
DW_ORD_row_major_ _____________________

Figure 12. Array ordering

The ordering attribute may optionally appear on one-dimensional arrays; it will be ignored.

An array type entry has a DW_AT_type attribute describing the type of each element of the
array.

If the amount of storage allocated to hold each element of an object of the given array type is
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the array type entry has a DW_AT_stride_size attribute, whose
constant value represents the size in bits of each element of the array.

If the size of the entire array can be determined statically at compile time, the array type entry
may have a DW_AT_byte_size attribute, whose constant value represents the total size in
bytes of an instance of the array type.

Note that if the size of the array can be determined statically at compile time, this value can
usually be computed by multiplying the number of array elements by the size of each element.

Each array dimension is described by a debugging information entry with either the tag
DW_TAG_subrange_type or the tag DW_TAG_enumeration_type. These entries are
children of the array type entry and are ordered to reflect the appearance of the dimensions in the
source program (i.e. leftmost dimension first, next to leftmost second, and so on).

In languages, such as ANSI-C, in which there is no concept of a ‘‘multidimensional array,’’ an
array of arrays may be represented by a debugging information entry for a multidimensional
array.

5.5 Structure, Union, and Class Type Entries

The languages C, C++, and Pascal, among others, allow the programmer to define types that are
collections of related components. In C and C++, these collections are called ‘‘structures.’’ In
Pascal, they are called ‘‘records.’’ The components may be of different types. The components
are called ‘‘members’’ in C and C++, and ‘‘fields’’ in Pascal.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 37
Industry Review Draft

DWARF Debugging Information Format

The components of these collections each exist in their own space in computer memory. The
components of a C or C++ ‘‘union’’ all coexist in the same memory.

Pascal and other languages have a ‘‘discriminated union,’’ also called a ‘‘variant record.’’
Here, selection of a number of alternative substructures (‘‘variants’’) is based on the value of a
component that is not part of any of those substructures (the ‘‘discriminant’’).

Among the languages discussed in this document, the ‘‘class’’ concept is unique to C++. A class
is similar to a structure. A C++ class or structure may have ‘‘member functions’’ which are
subroutines that are within the scope of a class or structure.

5.5.1 General Structure Description

Structure, union, and class types are represented by debugging information entries with the tags
DW_TAG_structure_type, DW_TAG_union_type and DW_TAG_class_type,
respectively. If a name has been given to the structure, union, or class in the source program,
then the corresponding structure type, union type, or class type entry has a DW_AT_name
attribute whose value is a null-terminated string containing the type name as it appears in the
source program.

If the size of an instance of the structure type, union type, or class type entry can be determined
statically at compile time, the entry has a DW_AT_byte_size attribute whose constant value is
the number of bytes required to hold an instance of the structure, union, or class, and any padding
bytes.

For C and C++, an incomplete structure, union or class type is represented by a structure, union
or class entry that does not have a byte size attribute and that has a DW_AT_declaration
attribute.

The members of a structure, union, or class are represented by debugging information entries that
are owned by the corresponding structure type, union type, or class type entry and appear in the
same order as the corresponding declarations in the source program.

Data member declarations occurring within the declaration of a structure, union or class type
are considered to be ‘‘definitions’’ of those members, with the exception of C++ ‘‘static’’ data
members, whose definitions appear outside of the declaration of the enclosing structure, union or
class type. Function member declarations appearing within a structure, union or class type
declaration are definitions only if the body of the function also appears within the type
declaration.

If the definition for a given member of the structure, union or class does not appear within the
body of the declaration, that member also has a debugging information entry describing its
definition. That entry will have a DW_AT_specification attribute referencing the
debugging entry owned by the body of the structure, union or class debugging entry and
representing a non-defining declaration of the data or function member. The referenced entry will
not have information about the location of that member (low and high pc attributes for function
members, location descriptions for data members) and will have a DW_AT_declaration
attribute.

5.5.2 Derived Classes and Structures

The class type or structure type entry that describes a derived class or structure owns debugging
information entries describing each of the classes or structures it is derived from, ordered as they
were in the source program. Each such entry has the tag DW_TAG_inheritance.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 38
Industry Review Draft

DWARF Debugging Information Format

An inheritance entry has a DW_AT_type attribute whose value is a reference to the debugging
information entry describing the structure or class from which the parent structure or class of the
inheritance entry is derived. It also has a DW_AT_data_member_location attribute, whose
value is a location description describing the location of the beginning of the data members
contributed to the entire class by this subobject relative to the beginning address of the data
members of the entire class.

An inheritance entry may have a DW_AT_accessibility attribute. If no accessibility
attribute is present, private access is assumed. If the structure or class referenced by the
inheritance entry serves as a virtual base class, the inheritance entry has a DW_AT_virtuality
attribute.

In C++, a derived class may contain access declarations that change the accessibility of
individual class members from the overall accessibility specified by the inheritance declaration.
A single access declaration may refer to a set of overloaded names.

If a derived class or structure contains access declarations, each such declaration may be
represented by a debugging information entry with the tag DW_TAG_access_declaration.
Each such entry is a child of the structure or class type entry.

An access declaration entry has a DW_AT_name attribute, whose value is a null-terminated string
representing the name used in the declaration in the source program, including any class or
structure qualifiers.

An access declaration entry also has a DW_AT_accessibility attribute describing the
declared accessibility of the named entities.

5.5.3 Friends

Each ‘‘friend’’ declared by a structure, union or class type may be represented by a debugging
information entry that is a child of the structure, union or class type entry; the friend entry has the
tag DW_TAG_friend.

A friend entry has a DW_AT_friend attribute, whose value is a reference to the debugging
information entry describing the declaration of the friend.

5.5.4 Structure Data Member Entries

A data member (as opposed to a member function) is represented by a debugging information
entry with the tag DW_TAG_member. The member entry for a named member has a
DW_AT_name attribute whose value is a null-terminated string containing the member name as it
appears in the source program. If the member entry describes a C++ anonymous union, the name
attribute is omitted or consists of a single zero byte.

The structure data member entry has a DW_AT_type attribute to denote the type of that member.

If the member entry is defined in the structure or class body, it has a
DW_AT_data_member_location attribute whose value is a location description that
describes the location of that member relative to the base address of the structure, union, or class
that most closely encloses the corresponding member declaration.

The addressing expression represented by the location description for a structure data member
expects the base address of the structure data member to be on the expression stack before being
evaluated.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 39
Industry Review Draft

DWARF Debugging Information Format

The location description for a data member of a union may be omitted, since all data members of
a union begin at the same address.

If the member entry describes a bit field, then that entry has the following attributes:

1. A DW_AT_byte_size attribute whose constant value is the number of bytes that contain
an instance of the bit field and any padding bits.

The byte size attribute may be omitted if the size of the object containing the bit field can be
inferred from the type attribute of the data member containing the bit field.

2. A DW_AT_bit_offset attribute whose constant value is the number of bits to the left of
the leftmost (most significant) bit of the bit field value.

3. A DW_AT_bit_size attribute whose constant value is the number of bits occupied by
the bit field value.

The location description for a bit field calculates the address of an anonymous object containing
the bit field. The address is relative to the structure, union, or class that most closely encloses the
bit field declaration. The number of bytes in this anonymous object is the value of the byte size
attribute of the bit field. The offset (in bits) from the most significant bit of the anonymous object
to the most significant bit of the bit field is the value of the bit offset attribute.

For example, take one possible representation of the following structure definition in both big
and little endian byte orders:

struct S {
int j:5;
int k:6;
int m:5;
int n:8;

};

In both cases, the location descriptions for the debugging information entries for j, k, m and
n describe the address of the same 32-bit word that contains all three members. (In the big-
endian case, the location description addresses the most significant byte, in the little-endian case,
the least significant). The following diagram shows the structure layout and lists the bit offsets
for each case. The offsets are from the most significant bit of the object addressed by the location
description.

Bit Offsets:
j:0
k:5
m:11
n:16

Big-Endian

j
0

31
k

26
m

20
n

15
pad

7 0

Bit Offsets:
j:27
k:21
m:16
n:8

Little-Endian

pad
31

n
23

m
15

k
10

j
0

4 0

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 40
Industry Review Draft

DWARF Debugging Information Format

5.5.5 Structure Member Function Entries

A member function is represented in the debugging information by a debugging information entry
with the tag DW_TAG_subprogram. The member function entry may contain the same
attributes and follows the same rules as non-member global subroutine entries (see section 3.3).

If the member function entry describes a virtual function, then that entry has a
DW_AT_virtuality attribute.

An entry for a virtual function also has a DW_AT_vtable_elem_location attribute whose
value contains a location description yielding the address of the slot for the function within the
virtual function table for the enclosing class or structure.

If a subroutine entry represents the defining declaration of a member function and that definition
appears outside of the body of the enclosing class or structure declaration, the subroutine entry
has a DW_AT_specification attribute, whose value is a reference to the debugging
information entry representing the declaration of this function member. The referenced entry will
be a child of some class or structure type entry.

Subroutine entries containing the DW_AT_specification attribute do not need to duplicate
information provided by the declaration entry referenced by the specification attribute. In
particular, such entries do not need to contain attributes for the name or return type of the
function member whose definition they represent.

5.5.6 Class Template Instantiations

In C++ a class template is a generic definition of a class type that is instantiated differently when
an instance of the class is declared or defined. The generic description of the class may include
both parameterized types and parameterized constant values. DWARF does not represent the
generic template definition, but does represent each instantiation.

A class template instantiation is represented by a debugging information with the tag
DW_TAG_class_type. With four exceptions, such an entry will contain the same attributes
and have the same types of child entries as would an entry for a class type defined explicitly using
the instantiation types and values. The exceptions are:

1. Each formal parameterized type declaration appearing in the template definition is
represented by a debugging information entry with the tag
DW_TAG_template_type_parameter. Each such entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the name of the formal type
parameter as it appears in the source program. The template type parameter entry also has a
DW_AT_type attribute describing the actual type by which the formal is replaced for this
instantiation.

2. Each formal parameterized value declaration appearing in the templated definition is
represented by a debugging information entry with the tag
DW_TAG_template_value_parameter. Each such entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the name of the formal value
parameter as it appears in the source program. The template value parameter entry also has
a DW_AT_type attribute describing the type of the parameterized value. Finally, the
template value parameter entry has a DW_AT_const_value attribute, whose value is the
actual constant value of the value parameter for this instantiation as represented on the
target architecture.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 41
Industry Review Draft

DWARF Debugging Information Format

3. If the compiler has generated a special compilation unit to hold the template instantiation
and that compilation unit has a different name from the compilation unit containing the
template definition, the name attribute for the debugging entry representing that
compilation unit should be empty or omitted.

4. If the class type entry representing the template instantiation or any of its child entries
contain declaration coordinate attributes, those attributes should refer to the source for the
template definition, not to any source generated artificially by the compiler.

5.5.7 Variant Entries

A variant part of a structure is represented by a debugging information entry with the tag
DW_TAG_variant_part and is owned by the corresponding structure type entry.

If the variant part has a discriminant, the discriminant is represented by a separate debugging
information entry which is a child of the variant part entry. This entry has the form of a structure
data member entry. The variant part entry will have a DW_AT_discr attribute whose value is a
reference to the member entry for the discriminant.

If the variant part does not have a discriminant (tag field), the variant part entry has a
DW_AT_type attribute to represent the tag type.

Each variant of a particular variant part is represented by a debugging information entry with the
tag DW_TAG_variant and is a child of the variant part entry. The value that selects a given
variant may be represented in one of three ways. The variant entry may have a
DW_AT_discr_value attribute whose value represents a single case label. The value of this
attribute is encoded as an LEB128 number. The number is signed if the tag type for the variant
part containing this variant is a signed type. The number is unsigned if the tag type is an
unsigned type.

Alternatively, the variant entry may contain a DW_AT_discr_list attribute, whose value
represents a list of discriminant values. This list is represented by any of the block forms and
may contain a mixture of case labels and label ranges. Each item on the list is prefixed with a
discriminant value descriptor that determines whether the list item represents a single label or a
label range. A single case label is represented as an LEB128 number as defined above for the
DW_AT_discr_value attribute. A label range is represented by two LEB128 numbers, the
low value of the range followed by the high value. Both values follow the rules for signedness
just described. The discriminant value descriptor is a constant that may have one of the values
given in Figure 13.

_ ________________
DW_DSC_label
DW_DSC_range_ ________________

Figure 13. Discriminant descriptor values

If a variant entry has neither a DW_AT_discr_value attribute nor a DW_AT_discr_list
attribute, or if it has a DW_AT_discr_list attribute with 0 size, the variant is a default
variant.

The components selected by a particular variant are represented by debugging information entries
owned by the corresponding variant entry and appear in the same order as the corresponding
declarations in the source program.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 42
Industry Review Draft

DWARF Debugging Information Format

5.6 Enumeration Type Entries

An ‘‘enumeration type’’ is a scalar that can assume one of a fixed number of symbolic values.

An enumeration type is represented by a debugging information entry with the tag
DW_TAG_enumeration_type.

If a name has been given to the enumeration type in the source program, then the corresponding
enumeration type entry has a DW_AT_name attribute whose value is a null-terminated string
containing the enumeration type name as it appears in the source program. These entries also
have a DW_AT_byte_size attribute whose constant value is the number of bytes required to
hold an instance of the enumeration.

Each enumeration literal is represented by a debugging information entry with the tag
DW_TAG_enumerator. Each such entry is a child of the enumeration type entry, and the
enumerator entries appear in the same order as the declarations of the enumeration literals in the
source program.

Each enumerator entry has a DW_AT_name attribute, whose value is a null-terminated string
containing the name of the enumeration literal as it appears in the source program. Each
enumerator entry also has a DW_AT_const_value attribute, whose value is the actual numeric
value of the enumerator as represented on the target system.

5.7 Subroutine Type Entries

It is possible in C to declare pointers to subroutines that return a value of a specific type. In both
ANSI C and C++, it is possible to declare pointers to subroutines that not only return a value of
a specific type, but accept only arguments of specific types. The type of such pointers would be
described with a ‘‘pointer to’’ modifier applied to a user-defined type.

A subroutine type is represented by a debugging information entry with the tag
DW_TAG_subroutine_type. If a name has been given to the subroutine type in the source
program, then the corresponding subroutine type entry has a DW_AT_name attribute whose value
is a null-terminated string containing the subroutine type name as it appears in the source
program.

If the subroutine type describes a function that returns a value, then the subroutine type entry has
a DW_AT_type attribute to denote the type returned by the subroutine. If the types of the
arguments are necessary to describe the subroutine type, then the corresponding subroutine type
entry owns debugging information entries that describe the arguments. These debugging
information entries appear in the order that the corresponding argument types appear in the source
program.

In ANSI-C there is a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have a
DW_AT_prototyped attribute, whose value is a flag.

Each debugging information entry owned by a subroutine type entry has a tag whose value has
one of two possible interpretations.

1. Each debugging information entry that is owned by a subroutine type entry and that defines
a single argument of a specific type has the tag DW_TAG_formal_parameter.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 43
Industry Review Draft

DWARF Debugging Information Format

The formal parameter entry has a type attribute to denote the type of the corresponding
formal parameter.

2. The unspecified parameters of a variable parameter list are represented by a debugging
information entry owned by the subroutine type entry with the tag
DW_TAG_unspecified_parameters.

5.8 String Type Entries

A ‘‘string’’ is a sequence of characters that have specific semantics and operations that separate
them from arrays of characters. Fortran is one of the languages that has a string type.

A string type is represented by a debugging information entry with the tag
DW_TAG_string_type. If a name has been given to the string type in the source program,
then the corresponding string type entry has a DW_AT_name attribute whose value is a null-
terminated string containing the string type name as it appears in the source program.

The string type entry may have a DW_AT_string_length attribute whose value is a location
description yielding the location where the length of the string is stored in the program. The
string type entry may also have a DW_AT_byte_size attribute, whose constant value is the
size in bytes of the data to be retrieved from the location referenced by the string length attribute.
If no byte size attribute is present, the size of the data to be retrieved is the same as the size of an
address on the target machine.

If no string length attribute is present, the string type entry may have a DW_AT_byte_size
attribute, whose constant value is the length in bytes of the string.

5.9 Set Entries

Pascal provides the concept of a ‘‘set,’’ which represents a group of values of ordinal type.

A set is represented by a debugging information entry with the tag DW_TAG_set_type. If a
name has been given to the set type, then the set type entry has a DW_AT_name attribute whose
value is a null-terminated string containing the set type name as it appears in the source program.

The set type entry has a DW_AT_type attribute to denote the type of an element of the set.

If the amount of storage allocated to hold each element of an object of the given set type is
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the set type entry has a DW_AT_byte_size attribute, whose
constant value represents the size in bytes of an instance of the set type.

5.10 Subrange Type Entries

Several languages support the concept of a ‘‘subrange’’ type object. These objects can represent
a subset of the values that an object of the basis type for the subrange can represent. Subrange
type entries may also be used to represent the bounds of array dimensions.

A subrange type is represented by a debugging information entry with the tag
DW_TAG_subrange_type. If a name has been given to the subrange type, then the subrange
type entry has a DW_AT_name attribute whose value is a null-terminated string containing the
subrange type name as it appears in the source program.

The subrange entry may have a DW_AT_type attribute to describe the type of object of whose
values this subrange is a subset.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 44
Industry Review Draft

DWARF Debugging Information Format

If the amount of storage allocated to hold each element of an object of the given subrange type is
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the subrange type entry has a DW_AT_byte_size attribute, whose
constant value represents the size in bytes of each element of the subrange type.

The subrange entry may have the attributes DW_AT_lower_bound and
DW_AT_upper_bound to describe, respectively, the lower and upper bound values of the
subrange. The DW_AT_upper_bound attribute may be replaced by a DW_AT_count
attribute, whose value describes the number of elements in the subrange rather than the value of
the last element. If a bound or count value is described by a constant not represented in the
program’s address space and can be represented by one of the constant attribute forms, then the
value of the lower or upper bound or count attribute may be one of the constant types. Otherwise,
the value of the lower or upper bound or count attribute is a reference to a debugging information
entry describing an object containing the bound value or itself describing a constant value.

If either the lower or upper bound or count values are missing, the bound value is assumed to be a
language-dependent default constant.

The default lower bound value for C or C++ is 0. For Fortran, it is 1. No other default values
are currently defined by DWARF.

If the subrange entry has no type attribute describing the basis type, the basis type is assumed to
be the same as the object described by the lower bound attribute (if it references an object). If
there is no lower bound attribute, or it does not reference an object, the basis type is the type of
the upper bound or count attribute (if it references an object). If there is no upper bound or count
attribute or it does not reference an object, the type is assumed to be the same type, in the source
language of the compilation unit containing the subrange entry, as a signed integer with the same
size as an address on the target machine.

5.11 Pointer to Member Type Entries

In C++, a pointer to a data or function member of a class or structure is a unique type.

A debugging information entry representing the type of an object that is a pointer to a structure or
class member has the tag DW_TAG_ptr_to_member_type.

If the pointer to member type has a name, the pointer to member entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the type name as it appears in the
source program.

The pointer to member entry has a DW_AT_type attribute to describe the type of the class or
structure member to which objects of this type may point.

The pointer to member entry also has a DW_AT_containing_type attribute, whose value is a
reference to a debugging information entry for the class or structure to whose members objects of
this type may point.

Finally, the pointer to member entry has a DW_AT_use_location attribute whose value is a
location description that computes the address of the member of the class or structure to which
the pointer to member type entry can point.

The method used to find the address of a given member of a class or structure is common to any
instance of that class or structure and to any instance of the pointer or member type. The method
is thus associated with the type entry, rather than with each instance of the type.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 45
Industry Review Draft

DWARF Debugging Information Format

The DW_AT_use_location expression, however, cannot be used on its own, but must be used
in conjunction with the location expressions for a particular object of the given pointer to
member type and for a particular structure or class instance. The DW_AT_use_location
attribute expects two values to be pushed onto the location expression stack before the
DW_AT_use_location expression is evaluated. The first value pushed should be the value of
the pointer to member object itself. The second value pushed should be the base address of the
entire structure or union instance containing the member whose address is being calculated.

So, for an expression like

object.*mbr_ptr

where mbr_ptr has some pointer to member type, a debugger should:

1. Push the value of mbr_ptr onto the location expression stack.

2. Push the base address of object onto the location expression stack.

3. Evaluate the DW_AT_use_location expression for the type of mbr_ptr.

5.12 File Type Entries

Some languages, such as Pascal, provide a first class data type to represent files.

A file type is represented by a debugging information entry with the tag DW_TAG_file_type.
If the file type has a name, the file type entry has a DW_AT_name attribute, whose value is a
null-terminated string containing the type name as it appears in the source program.

The file type entry has a DW_AT_type attribute describing the type of the objects contained in
the file.

The file type entry also has a DW_AT_byte_size attribute, whose value is a constant
representing the size in bytes of an instance of this file type.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 46
Industry Review Draft

DWARF Debugging Information Format

6. OTHER DEBUGGING INFORMATION

This section describes debugging information that is not represented in the form of debugging
information entries and is not contained within the .debug_info section.

6.1 Accelerated Access

A debugger frequently needs to find the debugging information for a program object defined
outside of the compilation unit where the debugged program is currently stopped. Sometimes it
will know only the name of the object; sometimes only the address. To find the debugging
information associated with a global object by name, using the DWARF debugging information
entries alone, a debugger would need to run through all entries at the highest scope within each
compilation unit. For lookup by address, for a subroutine, a debugger can use the low and high
pc attributes of the compilation unit entries to quickly narrow down the search, but these
attributes only cover the range of addresses for the text associated with a compilation unit entry.
To find the debugging information associated with a data object, an exhaustive search would be
needed. Furthermore, any search through debugging information entries for different
compilation units within a large program would potentially require the access of many memory
pages, probably hurting debugger performance.

To make lookups of program objects by name or by address faster, a producer of DWARF
information may provide two different types of tables containing information about the
debugging information entries owned by a particular compilation unit entry in a more condensed
format.

6.1.1 Lookup by Name

For lookup by name, a table is maintained in a separate object file section called
.debug_pubnames. The table consists of sets of variable length entries, each set describing
the names of global objects whose definitions or declarations are represented by debugging
information entries owned by a single compilation unit. Each set begins with a header containing
four values: the total length of the entries for that set, not including the length field itself, a
version number, the offset from the beginning of the .debug_info section of the compilation
unit entry referenced by the set and the size in bytes of the contents of the .debug_info
section generated to represent that compilation unit. This header is followed by a variable number
of offset/name pairs. Each pair consists of the offset from the beginning of the compilation unit
entry corresponding to the current set to the debugging information entry for the given object,
followed by a null-terminated character string representing the name of the object as given by the
DW_AT_name attribute of the referenced debugging entry. Each set of names is terminated by
zero.

In the case of the name of a static data member or function member of a C++ structure, class or
union, the name presented in the .debug_pubnames section is not the simple name given by
the DW_AT_name attribute of the referenced debugging entry, but rather the fully class qualified
name of the data or function member.

6.1.2 Lookup by Address

For lookup by address, a table is maintained in a separate object file section called
.debug_aranges. The table consists of sets of variable length entries, each set describing the
portion of the program’s address space that is covered by a single compilation unit. Each set
begins with a header containing five values:

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 47
Industry Review Draft

DWARF Debugging Information Format

1. The total length of the entries for that set, not including the length field itself.

2. A version number.

3. The offset from the beginning of the .debug_info section of the compilation unit entry
referenced by the set.

4. The size in bytes of an address on the target architecture. For segmented addressing, this is
the size of the offset portion of the address.

5. The size in bytes of a segment descriptor on the target architecture. If the target system
uses a flat address space, this value is 0.

This header is followed by a variable number of address range descriptors. Each descriptor is a
pair consisting of the beginning address of a range of text or data covered by some entry owned
by the corresponding compilation unit entry, followed by the length of that range. A particular
set is terminated by an entry consisting of two zeroes. By scanning the table, a debugger can
quickly decide which compilation unit to look in to find the debugging information for an object
that has a given address.

6.2 Line Number Information

A source-level debugger will need to know how to associate statements in the source files with the
corresponding machine instruction addresses in the executable object or the shared objects used
by that executable object. Such an association would make it possible for the debugger user to
specify machine instruction addresses in terms of source statements. This would be done by
specifying the line number and the source file containing the statement. The debugger can also
use this information to display locations in terms of the source files and to single step from
statement to statement.

As mentioned in section 3.1, above, the line number information generated for a compilation unit
is represented in the .debug_line section of an object file and is referenced by a
corresponding compilation unit debugging information entry in the .debug_info section.

If space were not a consideration, the information provided in the .debug_line section could
be represented as a large matrix, with one row for each instruction in the emitted object code.
The matrix would have columns for:

— the source file name

— the source line number

— the source column number

— whether this instruction is the beginning of a source statement

— whether this instruction is the beginning of a basic block.

Such a matrix, however, would be impractically large. We shrink it with two techniques. First,
we delete from the matrix each row whose file, line and source column information is identical
with that of its predecessors. Second, we design a byte-coded language for a state machine and
store a stream of bytes in the object file instead of the matrix. This language can be much more
compact than the matrix. When a consumer of the statement information executes, it must ‘‘run’’
the state machine to generate the matrix for each compilation unit it is interested in. The concept
of an encoded matrix also leaves room for expansion. In the future, columns can be added to the
matrix to encode other things that are related to individual instruction addresses.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 48
Industry Review Draft

DWARF Debugging Information Format

6.2.1 Definitions

The following terms are used in the description of the line number information format:

state machine The hypothetical machine used by a consumer of the line number
information to expand the byte-coded instruction stream into a matrix of
line number information.

statement program A series of byte-coded line number information instructions representing
one compilation unit.

basic block A sequence of instructions that is entered only at the first instruction and
exited only at the last instruction. We define a procedure invocation to
be an exit from a basic block.

sequence A series of contiguous target machine instructions. One compilation
unit may emit multiple sequences (that is, not all instructions within a
compilation unit are assumed to be contiguous).

sbyte Small signed integer.

ubyte Small unsigned integer.

uhalf Medium unsigned integer.

sword Large signed integer.

uword Large unsigned integer.

LEB128 Variable length signed and unsigned data. See section 7.6.

6.2.2 State Machine Registers

The statement information state machine has the following registers:

address The program-counter value corresponding to a machine instruction
generated by the compiler.

file An unsigned integer indicating the identity of the source file
corresponding to a machine instruction.

line An unsigned integer indicating a source line number. Lines are
numbered beginning at 1. The compiler may emit the value 0 in cases
where an instruction cannot be attributed to any source line.

column An unsigned integer indicating a column number within a source line.
Columns are numbered beginning at 1. The value 0 is reserved to
indicate that a statement begins at the ‘‘left edge’’ of the line.

is_stmt A boolean indicating that the current instruction is the beginning of a
statement.

basic_block A boolean indicating that the current instruction is the beginning of a
basic block.

end_sequence A boolean indicating that the current address is that of the first byte after
the end of a sequence of target machine instructions.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 49
Industry Review Draft

DWARF Debugging Information Format

At the beginning of each sequence within a statement program, the state of the registers is:

address 0
file 1
line 1
column 0
is_stmt determined by default_is_stmt in the statement program prologue
basic_block ‘‘false’’
end_sequence ‘‘false’’

6.2.3 Statement Program Instructions

The state machine instructions in a statement program belong to one of three categories:

special opcodes These have a ubyte opcode field and no arguments. Most of the
instructions in a statement program are special opcodes.

standard opcodes These have a ubyte opcode field which may be followed by zero or more
LEB128 arguments (except for DW_LNS_fixed_advance_pc, see
below). The opcode implies the number of arguments and their
meanings, but the statement program prologue also specifies the number
of arguments for each standard opcode.

extended opcodes These have a multiple byte format. The first byte is zero; the next bytes
are an unsigned LEB128 integer giving the number of bytes in the
instruction itself (does not include the first zero byte or the size). The
remaining bytes are the instruction itself.

6.2.4 The Statement Program Prologue

The optimal encoding of line number information depends to a certain degree upon the
architecture of the target machine. The statement program prologue provides information used by
consumers in decoding the statement program instructions for a particular compilation unit and
also provides information used throughout the rest of the statement program. The statement
program for each compilation unit begins with a prologue containing the following fields in order:

1. total_length (uword)
The size in bytes of the statement information for this compilation unit (not including the
total_length field itself).

2. version (uhalf)
Version identifier for the statement information format.

3. prologue_length (uword)
The number of bytes following the prologue_length field to the beginning of the first
byte of the statement program itself.

4. minimum_instruction_length (ubyte)
The size in bytes of the smallest target machine instruction. Statement program opcodes
that alter the address register first multiply their operands by this value.

5. default_is_stmt (ubyte)
The initial value of the is_stmt register.

A simple code generator that emits machine instructions in the order implied by the source
program would set this to ‘‘true,’’ and every entry in the matrix would represent a

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 50
Industry Review Draft

DWARF Debugging Information Format

statement boundary. A pipeline scheduling code generator would set this to ‘‘false’’ and
emit a specific statement program opcode for each instruction that represented a statement
boundary.

6. line_base (sbyte)
This parameter affects the meaning of the special opcodes. See below.

7. line_range (ubyte)
This parameter affects the meaning of the special opcodes. See below.

8. opcode_base (ubyte)
The number assigned to the first special opcode.

9. standard_opcode_lengths (array of ubyte)
This array specifies the number of LEB128 operands for each of the standard opcodes. The
first element of the array corresponds to the opcode whose value is 1, and the last element
corresponds to the opcode whose value is opcode_base - 1. By increasing
opcode_base, and adding elements to this array, new standard opcodes can be added,
while allowing consumers who do not know about these new opcodes to be able to skip
them.

10. include_directories (sequence of path names)
The sequence contains an entry for each path that was searched for included source files in
this compilation. (The paths include those directories specified explicitly by the user for
the compiler to search and those the compiler searches without explicit direction). Each
path entry is either a full path name or is relative to the current directory of the compilation.
The current directory of the compilation is understood to be the first entry and is not
explicitly represented. Each entry is a null-terminated string containing a full path name.
The last entry is followed by a single null byte.

11. file_names (sequence of file entries)
The sequence contains an entry for each source file that contributed to the statement
information for this compilation unit or is used in other contexts, such as in a declaration
coordinate or a macro file inclusion. Each entry has a null-terminated string containing the
file name, an unsigned LEB128 number representing the directory index of the directory in
which the file was found, an unsigned LEB128 number representing the time of last
modification for the file and an unsigned LEB128 number representing the length in bytes
of the file. A compiler may choose to emit LEB128(0) for the time and length fields to
indicate that this information is not available. The last entry is followed by a single null
byte.

The directory index represents an entry in the include_directories section. The
index is LEB128(0) if the file was found in the current directory of the compilation,
LEB128(1) if it was found in the first directory in the include_directories section,
and so on. The directory index is ignored for file names that represent full path names.

The statement program assigns numbers to each of the file entries in order, beginning with
1, and uses those numbers instead of file names in the file register.

A compiler may generate a single null byte for the file names field and define file names
using the extended opcode DEFINE_FILE.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 51
Industry Review Draft

DWARF Debugging Information Format

6.2.5 The Statement Program

As stated before, the goal of a statement program is to build a matrix representing one
compilation unit, which may have produced multiple sequences of target-machine instructions.
Within a sequence, addresses may only increase. (Line numbers may decrease in cases of
pipeline scheduling.)

6.2.5.1 Special Opcodes

Each 1-byte special opcode has the following effect on the state machine:

1. Add a signed integer to the line register.

2. Multiply an unsigned integer by the minimum_instruction_length field of the
statement program prologue and add the result to the address register.

3. Append a row to the matrix using the current values of the state machine registers.

4. Set the basic_block register to ‘‘false.’’

All of the special opcodes do those same four things; they differ from one another only in what
values they add to the line and address registers.

Instead of assigning a fixed meaning to each special opcode, the statement program uses several
parameters in the prologue to configure the instruction set. There are two reasons for this. First,
although the opcode space available for special opcodes now ranges from 10 through 255, the
lower bound may increase if one adds new standard opcodes. Thus, the opcode_base field of
the statement program prologue gives the value of the first special opcode. Second, the best
choice of special-opcode meanings depends on the target architecture. For example, for a RISC
machine where the compiler-generated code interleaves instructions from different lines to
schedule the pipeline, it is important to be able to add a negative value to the line register to
express the fact that a later instruction may have been emitted for an earlier source line. For a
machine where pipeline scheduling never occurs, it is advantageous to trade away the ability to
decrease the line register (a standard opcode provides an alternate way to decrease the line
number) in return for the ability to add larger positive values to the address register. To
permit this variety of strategies, the statement program prologue defines a line_base field that
specifies the minimum value which a special opcode can add to the line register and a
line_range field that defines the range of values it can add to the line register.

A special opcode value is chosen based on the amount that needs to be added to the line and
address registers. The maximum line increment for a special opcode is the value of the
line_base field in the prologue, plus the value of the line_range field, minus 1 (line
base + line range - 1). If the desired line increment is greater than the maximum line
increment, a standard opcode must be used instead of a special opcode. The ‘‘address advance’’
is calculated by dividing the desired address increment by the
minimum_instruction_length field from the prologue. The special opcode is then
calculated using the following formula:

opcode = (desired line increment - line_base) +
(line_range * address advance) + opcode_base

If the resulting opcode is greater than 255, a standard opcode must be used instead.

To decode a special opcode, subtract the opcode_base from the opcode itself. The amount to
increment the address register is the adjusted opcode divided by the line_range. The
amount to increment the line register is the line_base plus the result of the adjusted opcode

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 52
Industry Review Draft

DWARF Debugging Information Format

modulo the line_range. That is,
line increment = line_base + (adjusted opcode % line_range)

As an example, suppose that the opcode_base is 16, line_base is -1 and line_range is
4. This means that we can use a special opcode whenever two successive rows in the matrix have
source line numbers differing by any value within the range [-1, 2] (and, because of the limited
number of opcodes available, when the difference between addresses is within the range [0, 59]).

The opcode mapping would be:
_ ______________________________________
Opcode Line advance Address advance_ ______________________________________

16 -1 0
17 0 0
18 1 0
19 2 0
20 -1 1
21 0 1
22 1 1
23 2 1

253 0 59
254 1 59
255 2 59_ ______________________________________

There is no requirement that the expression 255 - line_base + 1 be an integral multiple
of line_range.

6.2.5.2 Standard Opcodes

There are currently 9 standard ubyte opcodes. In the future additional ubyte opcodes may be
defined by setting the opcode_base field in the statement program prologue to a value greater
than 10.

1. DW_LNS_copy
Takes no arguments. Append a row to the matrix using the current values of the state-
machine registers. Then set the basic_block register to ‘‘false.’’

2. DW_LNS_advance_pc
Takes a single unsigned LEB128 operand, multiplies it by the
minimum_instruction_length field of the prologue, and adds the result to the
address register of the state machine.

3. DW_LNS_advance_line
Takes a single signed LEB128 operand and adds that value to the line register of the state
machine.

4. DW_LNS_set_file
Takes a single unsigned LEB128 operand and stores it in the file register of the state
machine.

5. DW_LNS_set_column
Takes a single unsigned LEB128 operand and stores it in the column register of the state
machine.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 53
Industry Review Draft

DWARF Debugging Information Format

6. DW_LNS_negate_stmt
Takes no arguments. Set the is_stmt register of the state machine to the logical negation
of its current value.

7. DW_LNS_set_basic_block
Takes no arguments. Set the basic_block register of the state machine to ‘‘true.’’

8. DW_LNS_const_add_pc
Takes no arguments. Add to the address register of the state machine the address
increment value corresponding to special opcode 255.

The motivation for DW_LNS_const_add_pc is this: when the statement program needs
to advance the address by a small amount, it can use a single special opcode, which
occupies a single byte. When it needs to advance the address by up to twice the range of
the last special opcode, it can use DW_LNS_const_add_pc followed by a special
opcode, for a total of two bytes. Only if it needs to advance the address by more than twice
that range will it need to use both DW_LNS_advance_pc and a special opcode,
requiring three or more bytes.

9. DW_LNS_fixed_advance_pc
Takes a single uhalf operand. Add to the address register of the state machine the value
of the (unencoded) operand. This is the only extended opcode that takes an argument that
is not a variable length number.

The motivation for DW_LNS_fixed_advance_pc is this: existing assemblers cannot
emit DW_LNS_advance_pc or special opcodes because they cannot encode LEB128
numbers or judge when the computation of a special opcode overflows and requires the use
of DW_LNS_advance_pc. Such assemblers, however, can use
DW_LNS_fixed_advance_pc instead, sacrificing compression.

6.2.5.3 Extended Opcodes

There are three extended opcodes currently defined. The first byte following the length field of
the encoding for each contains a sub-opcode.

1. DW_LNE_end_sequence
Set the end_sequence register of the state machine to ‘‘true’’ and append a row to the
matrix using the current values of the state-machine registers. Then reset the registers to
the initial values specified above.

Every statement program sequence must end with a DW_LNE_end_sequence
instruction which creates a row whose address is that of the byte after the last target
machine instruction of the sequence.

2. DW_LNE_set_address
Takes a single relocatable address as an operand. The size of the operand is the size
appropriate to hold an address on the target machine. Set the address register to the
value given by the relocatable address.

All of the other statement program opcodes that affect the address register add a delta
to it. This instruction stores a relocatable value into it instead.

3. DW_LNE_define_file
Takes 4 arguments. The first is a null terminated string containing a source file name. The
second is an unsigned LEB128 number representing the directory index of the directory in

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 54
Industry Review Draft

DWARF Debugging Information Format

which the file was found. The third is an unsigned LEB128 number representing the time
of last modification of the file. The fourth is an unsigned LEB128 number representing the
length in bytes of the file. The time and length fields may contain LEB128(0) if the
information is not available.

The directory index represents an entry in the include_directories section of the
statement program prologue. The index is LEB128(0) if the file was found in the current
directory of the compilation, LEB128(1) if it was found in the first directory in the
include_directories section, and so on. The directory index is ignored for file
names that represent full path names.

The files are numbered, starting at 1, in the order in which they appear; the names in the
prologue come before names defined by the DW_LNE_define_file instruction. These
numbers are used in the the file register of the state machine.

Appendix 3 gives some sample statement programs.

6.3 Macro Information

Some languages, such as C and C++, provide a way to replace text in the source program with
macros defined either in the source file itself, or in another file included by the source file.
Because these macros are not themselves defined in the target language, it is difficult to represent
their definitions using the standard language constructs of DWARF. The debugging information
therefore reflects the state of the source after the macro definition has been expanded, rather than
as the programmer wrote it. The macro information table provides a way of preserving the
original source in the debugging information.

As described in section 3.1, the macro information for a given compilation unit is represented in
the .debug_macinfo section of an object file. The macro information for each compilation
unit is represented as a series of ‘‘macinfo’’ entries. Each macinfo entry consists of a ‘‘type
code’’ and up to two additional operands. The series of entries for a given compilation unit ends
with an entry containing a type code of 0.

6.3.1 Macinfo Types

The valid macinfo types are as follows:

DW_MACINFO_define A macro definition.

DW_MACINFO_undef A macro un-definition.

DW_MACINFO_start_file The start of a new source file inclusion.

DW_MACINFO_end_file The end of the current source file inclusion.

DW_MACINFO_vendor_ext Vendor specific macro information directives that do not fit
into one of the standard categories.

6.3.1.1 Define and Undefine Entries

All DW_MACINFO_define and DW_MACINFO_undef entries have two operands. The first
operand encodes the line number of the source line on which the relevant defining or undefining
pre-processor directives appeared.

The second operand consists of a null-terminated character string. In the case of a
DW_MACINFO_undef entry, the value of this string will be simply the name of the pre-
processor symbol which was undefined at the indicated source line.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 55
Industry Review Draft

DWARF Debugging Information Format

In the case of a DW_MACINFO_define entry, the value of this string will be the name of the
pre-processor symbol that was defined at the indicated source line, followed immediately by the
macro formal parameter list including the surrounding parentheses (in the case of a function-like
macro) followed by the definition string for the macro. If there is no formal parameter list, then
the name of the defined macro is followed directly by its definition string.

In the case of a function-like macro definition, no whitespace characters should appear between
the name of the defined macro and the following left parenthesis. Also, no whitespace characters
should appear between successive formal parameters in the formal parameter list. (Successive
formal parameters should, however, be separated by commas.) Also, exactly one space character
should separate the right parenthesis which terminates the formal parameter list and the following
definition string.

In the case of a ‘‘normal’’ (i.e. non-function-like) macro definition, exactly one space character
should separate the name of the defined macro from the following definition text.

6.3.1.2 Start File Entries

Each DW_MACINFO_start_file entry also has two operands. The first operand encodes the
line number of the source line on which the inclusion pre-processor directive occurred.

The second operand encodes a source file name index. This index corresponds to a file number in
the statement information table for the relevant compilation unit. This index indicates (indirectly)
the name of the file which is being included by the inclusion directive on the indicated source
line.

6.3.1.3 End File Entries

A DW_MACINFO_end_file entry has no operands. The presence of the entry marks the end of
the current source file inclusion.

6.3.1.4 Vendor Extension Entries

A DW_MACINFO_vendor_ext entry has two operands. The first is a constant. The second is
a null-terminated character string. The meaning and/or significance of these operands is
intentionally left undefined by this specification.

A consumer must be able to totally ignore all DW_MACINFO_vendor_ext entries that it does
not understand.

6.3.2 Base Source Entries

In addition to producing a matched pair of DW_MACINFO_start_file and
DW_MACINFO_end_file entries for each inclusion directive actually processed during
compilation, a producer should generate such a matched pair also for the ‘‘base’’ source file
submitted to the compiler for compilation. If the base source file for a compilation is submitted
to the compiler via some means other than via a named disk file (e.g. via the standard input
stream on a UNIX system) then the compiler should still produce this matched pair of
DW_MACINFO_start_file and DW_MACINFO_end_file entries for the base source file,
however, the file name indicated (indirectly) by the DW_MACINFO_start_file entry of the
pair should reference a statement information file name entry consisting of a null string.

6.3.3 Macinfo Entries for Command Line Options

In addition to producing DW_MACINFO_define and DW_MACINFO_undef entries for each of
the define and undefine directives processed during compilation, the DWARF producer should

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 56
Industry Review Draft

DWARF Debugging Information Format

generate a DW_MACINFO_define or DW_MACINFO_undef entry for each pre-processor
symbol which is defined or undefined by some means other than via a define or undefine directive
within the compiled source text. In particular, pre-processor symbol definitions and un-
definitions which occur as a result of command line options (when invoking the compiler) should
be represented by their own DW_MACINFO_define and DW_MACINFO_undef entries.

All such DW_MACINFO_define and DW_MACINFO_undef entries representing compilation
options should appear before the first DW_MACINFO_start_file entry for that compilation
unit and should encode the value 0 in their line number operands.

6.3.4 General Rules and Restrictions

All macinfo entries within a .debug_macinfo section for a given compilation unit should
appear in the same order in which the directives were processed by the compiler.

All macinfo entries representing command line options should appear in the same order as the
relevant command line options were given to the compiler. In the case where the compiler itself
implicitly supplies one or more macro definitions or un-definitions in addition to those which
may be specified on the command line, macinfo entries should also be produced for these implicit
definitions and un-definitions, and these entries should also appear in the proper order relative to
each other and to any definitions or undefinitions given explicitly by the user on the command
line.

6.4 Call Frame Information

Debuggers often need to be able to view and modify the state of any subroutine activation that is
on the call stack. An activation consists of:

• A code location that is within the subroutine. This location is either the place where the
program stopped when the debugger got control (e.g. a breakpoint), or is a place where a
subroutine made a call or was interrupted by an asynchronous event (e.g. a signal).

• An area of memory that is allocated on a stack called a ‘‘call frame.’’ The call frame is
identified by an address on the stack. We refer to this address as the Canonical Frame
Address or CFA.

• A set of registers that are in use by the subroutine at the code location.

Typically, a set of registers are designated to be preserved across a call. If a callee wishes to use
such a register, it saves the value that the register had at entry time in its call frame and restores
it on exit. The code that allocates space on the call frame stack and performs the save operation
is called the subroutine’s prologue, and the code that performs the restore operation and
deallocates the frame is called its epilogue. Typically, the prologue code is physically at the
beginning of a subroutine and the epilogue code is at the end.

To be able to view or modify an activation that is not on the top of the call frame stack, the
debugger must ‘‘virtually unwind’’ the stack of activations until it finds the activation of interest.
A debugger unwinds a stack in steps. Starting with the current activation it restores any registers
that were preserved by the current activation and computes the predecessor’s CFA and code
location. This has the logical effect of returning from the current subroutine to its predecessor.
We say that the debugger virtually unwinds the stack because it preserves enough information to
be able to ‘‘rewind’’ the stack back to the state it was in before it attempted to unwind it.

The unwinding operation needs to know where registers are saved and how to compute the
predecessor’s CFA and code location. When considering an architecture-independent way of

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 57
Industry Review Draft

DWARF Debugging Information Format

encoding this information one has to consider a number of special things.

• Prologue and epilogue code is not always in distinct blocks at the beginning and end of a
subroutine. It is common to duplicate the epilogue code at the site of each return from the
code. Sometimes a compiler breaks up the register save/unsave operations and moves them
into the body of the subroutine to just where they are needed.

• Compilers use different ways to manage the call frame. Sometimes they use a frame pointer
register, sometimes not.

• The algorithm to compute the CFA changes as you progress through the prologue and
epilogue code. (By definition, the CFA value does not change.)

• Some subroutines have no call frame.

• Sometimes a register is saved in another register that by convention does not need to be
saved.

• Some architectures have special instructions that perform some or all of the register
management in one instruction, leaving special information on the stack that indicates how
registers are saved.

• Some architectures treat return address values specially. For example, in one architecture,
the call instruction guarantees that the low order two bits will be zero and the return
instruction ignores those bits. This leaves two bits of storage that are available to other uses
that must be treated specially.

6.4.1 Structure of Call Frame Information

DWARF supports virtual unwinding by defining an architecture independent basis for recording
how procedures save and restore registers throughout their lifetimes. This basis must be
augmented on some machines with specific information that is defined by either an architecture
specific ABI authoring committee, a hardware vendor, or a compiler producer. The body defining
a specific augmentation is referred to below as the ‘‘augmenter.’’

Abstractly, this mechanism describes a very large table that has the following structure:

LOC CFA R0 R1 ... RN
L0
L1
...
LN

The first column indicates an address for every location that contains code in a program. (In
shared objects, this is an object-relative offset.) The remaining columns contain virtual
unwinding rules that are associated with the indicated location. The first column of the rules
defines the CFA rule which is a register and a signed offset that are added together to compute the
CFA value.

The remaining columns are labeled by register number. This includes some registers that have
special designation on some architectures such as the PC and the stack pointer register. (The
actual mapping of registers for a particular architecture is performed by the augmenter.) The
register columns contain rules that describe whether a given register has been saved and the rule
to find the value for the register in the previous frame.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 58
Industry Review Draft

DWARF Debugging Information Format

The register rules are:

undefined A register that has this rule has no value in the previous frame. (By
convention, it is not preserved by a callee.)

same value This register has not been modified from the previous frame. (By
convention, it is preserved by the callee, but the callee has not modified
it.)

offset(N) The previous value of this register is saved at the address CFA+N where
CFA is the current CFA value and N is a signed offset.

register(R) The previous value of this register is stored in another register numbered
R.

architectural The rule is defined externally to this specification by the augmenter.

This table would be extremely large if actually constructed as described. Most of the entries at
any point in the table are identical to the ones above them. The whole table can be represented
quite compactly by recording just the differences starting at the beginning address of each
subroutine in the program.

The virtual unwind information is encoded in a self-contained section called .debug_frame.
Entries in a .debug_frame section are aligned on an addressing unit boundary and come in
two forms: A Common Information Entry (CIE) and a Frame Description Entry (FDE). Sizes of
data objects used in the encoding of the .debug_frame section are described in terms of the
same data definitions used for the line number information (see section 6.2.1).

A Common Information Entry holds information that is shared among many Frame Descriptors.
There is at least one CIE in every non-empty .debug_frame section. A CIE contains the
following fields, in order:

1. length
A uword constant that gives the number of bytes of the CIE structure, not including the
length field, itself (length mod <addressing unit size> == 0).

2. CIE_id
A uword constant that is used to distinguish CIEs from FDEs.

3. version
A ubyte version number. This number is specific to the call frame information and is
independent of the DWARF version number.

4. augmentation
A null terminated string that identifies the augmentation to this CIE or to the FDEs that use
it. If a reader encounters an augmentation string that is unexpected, then only the following
fields can be read: CIE: length, CIE_id, version, augmentation; FDE: length,
CIE_pointer, initial_location, address_range. If there is no
augmentation, this value is a zero byte.

5. code_alignment_factor
An unsigned LEB128 constant that is factored out of all advance location instructions (see
below).

6. data_alignment_factor
A signed LEB128 constant that is factored out of all offset instructions (see below.)

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 59
Industry Review Draft

DWARF Debugging Information Format

7. return_address_register
A ubyte constant that indicates which column in the rule table represents the return address
of the function. Note that this column might not correspond to an actual machine register.

8. initial_instructions
A sequence of rules that are interpreted to create the initial setting of each column in the
table.

9. padding
Enough DW_CFA_nop instructions to make the size of this entry match the length value
above.

An FDE contains the following fields, in order:

1. length
A uword constant that gives the number of bytes of the header and instruction stream for
this function (not including the length field itself) (length mod <addressing unit size> ==
0).

2. CIE_pointer
A uword constant offset into the .debug_frame section that denotes the CIE that is
associated with this FDE.

3. initial_location An addressing-unit sized constant indicating the address of the first
location associated with this table entry.

4. address_range
An addressing unit sized constant indicating the number of bytes of program instructions
described by this entry.

5. instructions
A sequence of table defining instructions that are described below.

6.4.2 Call Frame Instructions

Each call frame instruction is defined to take 0 or more operands. Some of the operands may be
encoded as part of the opcode (see section 7.23). The instructions are as follows:

1. DW_CFA_advance_loc takes a single argument that represents a constant delta. The
required action is to create a new table row with a location value that is computed by taking
the current entry’s location value and adding (delta * code_alignment_factor). All
other values in the new row are initially identical to the current row.

2. DW_CFA_offset takes two arguments: an unsigned LEB128 constant representing a
factored offset and a register number. The required action is to change the rule for the
register indicated by the register number to be an offset(N) rule with a value of (N =
factored offset * data_alignment_factor).

3. DW_CFA_restore takes a single argument that represents a register number. The
required action is to change the rule for the indicated register to the rule assigned it by the
initial_instructions in the CIE.

4. DW_CFA_set_loc takes a single argument that represents an address. The required
action is to create a new table row using the specified address as the location. All other
values in the new row are initially identical to the current row. The new location value
should always be greater than the current one.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 60
Industry Review Draft

DWARF Debugging Information Format

5. DW_CFA_advance_loc1 takes a single ubyte argument that represents a constant delta.
This instruction is identical to DW_CFA_advance_loc except for the encoding and size
of the delta argument.

6. DW_CFA_advance_loc2 takes a single uhalf argument that represents a constant delta.
This instruction is identical to DW_CFA_advance_loc except for the encoding and size
of the delta argument.

7. DW_CFA_advance_loc4 takes a single uword argument that represents a constant delta.
This instruction is identical to DW_CFA_advance_loc except for the encoding and size
of the delta argument.

8. DW_CFA_offset_extended takes two unsigned LEB128 arguments representing a
register number and a factored offset. This instruction is identical to DW_CFA_offset
except for the encoding and size of the register argument.

9. DW_CFA_restore_extended takes a single unsigned LEB128 argument that
represents a register number. This instruction is identical to DW_CFA_restore except
for the encoding and size of the register argument.

10. DW_CFA_undefined takes a single unsigned LEB128 argument that represents a register
number. The required action is to set the rule for the specified register to ‘‘undefined.’’

11. DW_CFA_same_value takes a single unsigned LEB128 argument that represents a
register number. The required action is to set the rule for the specified register to ‘‘same
value.’’

12. DW_CFA_register takes two unsigned LEB128 arguments representing register
numbers. The required action is to set the rule for the first register to be the second register.

13. DW_CFA_remember_state

14. DW_CFA_restore_state
These instructions define a stack of information. Encountering the
DW_CFA_remember_state instruction means to save the rules for every register on the
current row on the stack. Encountering the DW_CFA_restore_state instruction
means to pop the set of rules off the stack and place them in the current row. (This
operation is useful for compilers that move epilogue code into the body of a function.)

15. DW_CFA_def_cfa takes two unsigned LEB128 arguments representing a register number
and an offset. The required action is to define the current CFA rule to use the provided
register and offset.

16. DW_CFA_def_cfa_register takes a single unsigned LEB128 argument representing
a register number. The required action is to define the current CFA rule to use the provided
register (but to keep the old offset).

17. DW_CFA_def_cfa_offset takes a single unsigned LEB128 argument representing an
offset. The required action is to define the current CFA rule to use the provided offset (but
to keep the old register).

18. DW_CFA_nop has no arguments and no required actions. It is used as padding to make the
FDE an appropriate size.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 61
Industry Review Draft

DWARF Debugging Information Format

6.4.3 Call Frame Instruction Usage

To determine the virtual unwind rule set for a given location (L1), one searches through the FDE
headers looking at the initial_location and address_range values to see if L1 is
contained in the FDE. If so, then:

1. Initialize a register set by reading the initial_instructions field of the associated
CIE.

2. Read and process the FDE’s instruction sequence until a DW_CFA_advance_loc,
DW_CFA_set_loc, or the end of the instruction stream is encountered.

3. If a DW_CFA_advance_loc or DW_CFA_set_loc instruction was encountered, then
compute a new location value (L2). If L1 >= L2 then process the instruction and go back
to step 2.

4. The end of the instruction stream can be thought of as a
DW_CFA_set_loc(initial_location + address_range)
instruction. Unless the FDE is ill-formed, L1 should be less than L2 at this point.

The rules in the register set now apply to location L1.

For an example, see Appendix 5.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 62
Industry Review Draft

DWARF Debugging Information Format

7. DATA REPRESENTATION

This section describes the binary representation of the debugging information entry itself, of the
attribute types and of other fundamental elements described above.

7.1 Vendor Extensibility

To reserve a portion of the DWARF name space and ranges of enumeration values for use for
vendor specific extensions, special labels are reserved for tag names, attribute names, base type
encodings, location operations, language names, calling conventions and call frame instructions.
The labels denoting the beginning and end of the reserved value range for vendor specific
extensions consist of the appropriate prefix (DW_TAG, DW_AT, DW_ATE, DW_OP, DW_LANG, or
DW_CFA respectively) followed by _lo_user or _hi_user. For example, for entry tags, the
special labels are DW_TAG_lo_user and DW_TAG_hi_user. Values in the range between
prefix_lo_user and prefix_hi_user inclusive, are reserved for vendor specific extensions.
Vendors may use values in this range without conflicting with current or future system-defined
values. All other values are reserved for use by the system.

Vendor defined tags, attributes, base type encodings, location atoms, language names, calling
conventions and call frame instructions, conventionally use the form prefix_vendor_id_name,
where vendor_id is some identifying character sequence chosen so as to avoid conflicts with other
vendors.

To ensure that extensions added by one vendor may be safely ignored by consumers that do not
understand those extensions, the following rules should be followed:

1. New attributes should be added in such a way that a debugger may recognize the format of
a new attribute value without knowing the content of that attribute value.

2. The semantics of any new attributes should not alter the semantics of previously existing
attributes.

3. The semantics of any new tags should not conflict with the semantics of previously existing
tags.

7.2 Reserved Error Values

As a convenience for consumers of DWARF information, the value 0 is reserved in the encodings
for attribute names, attribute forms, base type encodings, location operations, languages,
statement program opcodes, macro information entries and tag names to represent an error
condition or unknown value. DWARF does not specify names for these reserved values, since
they do not represent valid encodings for the given type and should not appear in DWARF
debugging information.

7.3 Executable Objects and Shared Objects

The relocated addresses in the debugging information for an executable object are virtual
addresses and the relocated addresses in the debugging information for a shared object are offsets
relative to the start of the lowest segment used by that shared object.

This requirement makes the debugging information for shared objects position independent.
Virtual addresses in a shared object may be calculated by adding the offset to the base address at
which the object was attached. This offset is available in the run-time linker’s data structures.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 63
Industry Review Draft

DWARF Debugging Information Format

7.4 File Constraints

All debugging information entries in a relocatable object file, executable object or shared object
are required to be physically contiguous.

7.5 Format of Debugging Information

For each compilation unit compiled with a DWARF Version 2 producer, a contribution is made
to the .debug_info section of the object file. Each such contribution consists of a compilation
unit header followed by a series of debugging information entries. Unlike the information
encoding for DWARF Version 1, Version 2 debugging information entries do not themselves
contain the debugging information entry tag or the attribute name and form encodings for each
attribute. Instead, each debugging information entry begins with a code that represents an entry
in a separate abbreviations table. This code is followed directly by a series of attribute values.
The appropriate entry in the abbreviations table guides the interpretation of the information
contained directly in the .debug_info section. Each compilation unit is associated with a
particular abbreviation table, but multiple compilation units may share the same table.

This encoding was based on the observation that typical DWARF producers produce a very
limited number of different types of debugging information entries. By extracting the common
information from those entries into a separate table, we are able to compress the generated
information.

7.5.1 Compilation Unit Header

The header for the series of debugging information entries contributed by a single compilation
unit consists of the following information:

1. A 4-byte unsigned integer representing the length of the .debug_info contribution for
that compilation unit, not including the length field itself.

2. A 2-byte unsigned integer representing the version of the DWARF information for that
compilation unit. For DWARF Version 2, the value in this field is 2.

3. A 4-byte unsigned offset into the .debug_abbrev section. This offset associates the
compilation unit with a particular set of debugging information entry abbreviations.

4. A 1-byte unsigned integer representing the size in bytes of an address on the target
architecture. If the system uses segmented addressing, this value represents the size of the
offset portion of an address.

The compilation unit header does not replace the DW_TAG_compile_unit debugging
information entry. It is additional information that is represented outside the standard DWARF
tag/attributes format.

7.5.2 Debugging Information Entry

Each debugging information entry begins with an unsigned LEB128 number containing the
abbreviation code for the entry. This code represents an entry within the abbreviation table
associated with the compilation unit containing this entry. The abbreviation code is followed by
a series of attribute values.

On some architectures, there are alignment constraints on section boundaries. To make it easier
to pad debugging information sections to satisfy such constraints, the abbreviation code 0 is
reserved. Debugging information entries consisting of only the 0 abbreviation code are
considered null entries.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 64
Industry Review Draft

DWARF Debugging Information Format

7.5.3 Abbreviation Tables

The abbreviation tables for all compilation units are contained in a separate object file section
called .debug_abbrev. As mentioned before, multiple compilation units may share the same
abbreviation table.

The abbreviation table for a single compilation unit consists of a series of abbreviation
declarations. Each declaration specifies the tag and attributes for a particular form of debugging
information entry. Each declaration begins with an unsigned LEB128 number representing the
abbreviation code itself. It is this code that appears at the beginning of a debugging information
entry in the .debug_info section. As described above, the abbreviation code 0 is reserved for
null debugging information entries. The abbreviation code is followed by another unsigned
LEB128 number that encodes the entry’s tag. The encodings for the tag names are given in
Figures 14 and 15.

Following the tag encoding is a 1-byte value that determines whether a debugging information
entry using this abbreviation has child entries or not. If the value is DW_CHILDREN_yes, the
next physically succeeding entry of any debugging information entry using this abbreviation is
the first child of the prior entry. If the 1-byte value following the abbreviation’s tag encoding is
DW_CHILDREN_no, the next physically succeeding entry of any debugging information entry
using this abbreviation is a sibling of the prior entry. (Either the first child or sibling entries may
be null entries). The encodings for the child determination byte are given in Figure 16. (As
mentioned in section 2.3, each chain of sibling entries is terminated by a null entry).

Finally, the child encoding is followed by a series of attribute specifications. Each attribute
specification consists of two parts. The first part is an unsigned LEB128 number representing the
attribute’s name. The second part is an unsigned LEB128 number representing the attribute’s
form. The series of attribute specifications ends with an entry containing 0 for the name and 0 for
the form.

The attribute form DW_FORM_indirect is a special case. For attributes with this form, the
attribute value itself in the .debug_info section begins with an unsigned LEB128 number that
represents its form. This allows producers to choose forms for particular attributes dynamically,
without having to add a new entry to the abbreviation table.

The abbreviations for a given compilation unit end with an entry consisting of a 0 byte for the
abbreviation code.

See Appendix 2 for a depiction of the organization of the debugging information.

7.5.4 Attribute Encodings

The encodings for the attribute names are given in Figures 17 and 18.

The attribute form governs how the value of the attribute is encoded. The possible forms may
belong to one of the following form classes:

address Represented as an object of appropriate size to hold an address on the
target machine (DW_FORM_addr). This address is relocatable in a
relocatable object file and is relocated in an executable file or shared object.

block Blocks come in four forms. The first consists of a 1-byte length followed
by 0 to 255 contiguous information bytes (DW_FORM_block1). The
second consists of a 2-byte length followed by 0 to 65,535 contiguous
information bytes (DW_FORM_block2). The third consists of a 4-byte

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 65
Industry Review Draft

DWARF Debugging Information Format

_ __
Tag name Value_ __
DW_TAG_array_type 0x01
DW_TAG_class_type 0x02
DW_TAG_entry_point 0x03
DW_TAG_enumeration_type 0x04
DW_TAG_formal_parameter 0x05
DW_TAG_imported_declaration 0x08
DW_TAG_label 0x0a
DW_TAG_lexical_block 0x0b
DW_TAG_member 0x0d
DW_TAG_pointer_type 0x0f
DW_TAG_reference_type 0x10
DW_TAG_compile_unit 0x11
DW_TAG_string_type 0x12
DW_TAG_structure_type 0x13
DW_TAG_subroutine_type 0x15
DW_TAG_typedef 0x16
DW_TAG_union_type 0x17
DW_TAG_unspecified_parameters 0x18
DW_TAG_variant 0x19
DW_TAG_common_block 0x1a
DW_TAG_common_inclusion 0x1b
DW_TAG_inheritance 0x1c
DW_TAG_inlined_subroutine 0x1d
DW_TAG_module 0x1e
DW_TAG_ptr_to_member_type 0x1f
DW_TAG_set_type 0x20
DW_TAG_subrange_type 0x21
DW_TAG_with_stmt 0x22
DW_TAG_access_declaration 0x23
DW_TAG_base_type 0x24
DW_TAG_catch_block 0x25
DW_TAG_const_type 0x26
DW_TAG_constant 0x27
DW_TAG_enumerator 0x28
DW_TAG_file_type 0x29_ __

Figure 14. Tag encodings (part 1)

length followed by 0 to 4,294,967,295 contiguous information bytes
(DW_FORM_block4). The fourth consists of an unsigned LEB128 length
followed by the number of bytes specified by the length
(DW_FORM_block). In all forms, the length is the number of information
bytes that follow. The information bytes may contain any mixture of
relocated (or relocatable) addresses, references to other debugging
information entries or data bytes.

constant There are six forms of constants: one, two, four and eight byte values
(respectively, DW_FORM_data1, DW_FORM_data2,
DW_FORM_data4, and DW_FORM_data8). There are also variable

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 66
Industry Review Draft

DWARF Debugging Information Format

_ __
Tag name Value_ __
DW_TAG_friend 0x2a
DW_TAG_namelist 0x2b
DW_TAG_namelist_item 0x2c
DW_TAG_packed_type 0x2d
DW_TAG_subprogram 0x2e
DW_TAG_template_type_param 0x2f
DW_TAG_template_value_param 0x30
DW_TAG_thrown_type 0x31
DW_TAG_try_block 0x32
DW_TAG_variant_part 0x33
DW_TAG_variable 0x34
DW_TAG_volatile_type 0x35
DW_TAG_lo_user 0x4080
DW_TAG_hi_user 0xffff_ __

Figure 15. Tag encodings (part 2)
_ ______________________________
Child determination name Value_ ______________________________
DW_CHILDREN_no 0
DW_CHILDREN_yes 1_ ______________________________

Figure 16. Child determination encodings

length constant data forms encoded using LEB128 numbers (see below).
Both signed (DW_FORM_sdata) and unsigned (DW_FORM_udata)
variable length constants are available.

flag A flag is represented as a single byte of data (DW_FORM_flag). If the flag
has value zero, it indicates the absence of the attribute. If the flag has a
non-zero value, it indicates the presence of the attribute.

reference There are two types of reference. The first is an offset relative to the first
byte of the compilation unit header for the compilation unit containing the
reference. The offset must refer to an entry within that same compilation
unit. There are five forms for this type of reference: one, two, four and
eight byte offsets (respectively, DW_FORM_ref1, DW_FORM_ref2,
DW_FORM_ref4, and DW_FORM_ref8). There are is also an unsigned
variable length offset encoded using LEB128 numbers
(DW_FORM_ref_udata).

The second type of reference is the address of any debugging information
entry within the same executable or shared object; it may refer to an entry
in a different compilation unit from the unit containing the reference. This
type of reference (DW_FORM_ref_addr) is the size of an address on the
target architecture; it is relocatable in a relocatable object file and relocated
in an executable file or shared object.

The use of compilation unit relative references will reduce the number of
link-time relocations and so speed up linking.

The use of address-type references allows for the commonization of
information, such as types, across compilation units.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 67
Industry Review Draft

DWARF Debugging Information Format

_ __
Attribute name Value Classes_ __
DW_AT_sibling 0x01 reference
DW_AT_location 0x02 block, constant
DW_AT_name 0x03 string
DW_AT_ordering 0x09 constant
DW_AT_byte_size 0x0b constant
DW_AT_bit_offset 0x0c constant
DW_AT_bit_size 0x0d constant
DW_AT_stmt_list 0x10 constant
DW_AT_low_pc 0x11 address
DW_AT_high_pc 0x12 address
DW_AT_language 0x13 constant
DW_AT_discr 0x15 reference
DW_AT_discr_value 0x16 constant
DW_AT_visibility 0x17 constant
DW_AT_import 0x18 reference
DW_AT_string_length 0x19 block, constant
DW_AT_common_reference 0x1a reference
DW_AT_comp_dir 0x1b string
DW_AT_const_value 0x1c string, constant, block
DW_AT_containing_type 0x1d reference
DW_AT_default_value 0x1e reference
DW_AT_inline 0x20 constant
DW_AT_is_optional 0x21 flag
DW_AT_lower_bound 0x22 constant, reference
DW_AT_producer 0x25 string
DW_AT_prototyped 0x27 flag
DW_AT_return_addr 0x2a block, constant
DW_AT_start_scope 0x2c constant
DW_AT_stride_size 0x2e constant
DW_AT_upper_bound 0x2f constant, reference_ __

Figure 17. Attribute encodings, part 1

string A string is a sequence of contiguous non-null bytes followed by one null
byte. A string may be represented immediately in the debugging
information entry itself (DW_FORM_string), or may be represented as a
4-byte offset into a string table contained in the .debug_str section of
the object file (DW_FORM_strp).

The form encodings are listed in Figure 19.

7.6 Variable Length Data

The special constant data forms DW_FORM_sdata and DW_FORM_udata are encoded using
‘‘Little Endian Base 128’’ (LEB128) numbers. LEB128 is a scheme for encoding integers
densely that exploits the assumption that most integers are small in magnitude. (This encoding is
equally suitable whether the target machine architecture represents data in big-endian or little-
endian order. It is ‘‘little endian’’ only in the sense that it avoids using space to represent the
‘‘big’’ end of an unsigned integer, when the big end is all zeroes or sign extension bits).

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 68
Industry Review Draft

DWARF Debugging Information Format

_ ___
Attribute name Value Classes_ ___
DW_AT_abstract_origin 0x31 reference
DW_AT_accessibility 0x32 constant
DW_AT_address_class 0x33 constant
DW_AT_artificial 0x34 flag
DW_AT_base_types 0x35 reference
DW_AT_calling_convention 0x36 constant
DW_AT_count 0x37 constant, reference
DW_AT_data_member_location 0x38 block, reference
DW_AT_decl_column 0x39 constant
DW_AT_decl_file 0x3a constant
DW_AT_decl_line 0x3b constant
DW_AT_declaration 0x3c flag
DW_AT_discr_list 0x3d block
DW_AT_encoding 0x3e constant
DW_AT_external 0x3f flag
DW_AT_frame_base 0x40 block, constant
DW_AT_friend 0x41 reference
DW_AT_identifier_case 0x42 constant
DW_AT_macro_info 0x43 constant
DW_AT_namelist_item 0x44 block
DW_AT_priority 0x45 reference
DW_AT_segment 0x46 block, constant
DW_AT_specification 0x47 reference
DW_AT_static_link 0x48 block, constant
DW_AT_type 0x49 reference
DW_AT_use_location 0x4a block, constant
DW_AT_variable_parameter 0x4b flag
DW_AT_virtuality 0x4c constant
DW_AT_vtable_elem_location 0x4d block, reference
DW_AT_lo_user 0x2000 —
DW_AT_hi_user 0x3fff —_ ___

Figure 18. Attribute encodings, part 2

DW_FORM_udata (unsigned LEB128) numbers are encoded as follows: start at the low order
end of an unsigned integer and chop it into 7-bit chunks. Place each chunk into the low order 7
bits of a byte. Typically, several of the high order bytes will be zero; discard them. Emit the
remaining bytes in a stream, starting with the low order byte; set the high order bit on each byte
except the last emitted byte. The high bit of zero on the last byte indicates to the decoder that it
has encountered the last byte.

The integer zero is a special case, consisting of a single zero byte.

Figure 20 gives some examples of DW_FORM_udata numbers. The 0x80 in each case is the
high order bit of the byte, indicating that an additional byte follows:

The encoding for DW_FORM_sdata (signed, 2s complement LEB128) numbers is similar,
except that the criterion for discarding high order bytes is not whether they are zero, but whether
they consist entirely of sign extension bits. Consider the 32-bit integer -2. The three high level
bytes of the number are sign extension, thus LEB128 would represent it as a single byte

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 69
Industry Review Draft

DWARF Debugging Information Format

_ ___
Form name Value Class_ ___
DW_FORM_addr 0x01 address
DW_FORM_block2 0x03 block
DW_FORM_block4 0x04 block
DW_FORM_data2 0x05 constant
DW_FORM_data4 0x06 constant
DW_FORM_data8 0x07 constant
DW_FORM_string 0x08 string
DW_FORM_block 0x09 block
DW_FORM_block1 0x0a block
DW_FORM_data1 0x0b constant
DW_FORM_flag 0x0c flag
DW_FORM_sdata 0x0d constant
DW_FORM_strp 0x0e string
DW_FORM_udata 0x0f constant
DW_FORM_ref_addr 0x10 reference
DW_FORM_ref1 0x11 reference
DW_FORM_ref2 0x12 reference
DW_FORM_ref4 0x13 reference
DW_FORM_ref8 0x14 reference
DW_FORM_ref_udata 0x15 reference
DW_FORM_indirect 0x16 (see section 7.5.3)_ ___

Figure 19. Attribute form encodings
_ ________________________________
Number First byte Second byte_ ________________________________

2 2 —
127 127 —
128 0+0x80 1
129 1+0x80 1
130 2+0x80 1

12857 57+0x80 100_ ________________________________

Figure 20. Examples of unsigned LEB128 encodings

containing the low order 7 bits, with the high order bit cleared to indicate the end of the byte
stream. Note that there is nothing within the LEB128 representation that indicates whether an
encoded number is signed or unsigned. The decoder must know what type of number to expect.

Figure 21 gives some examples of DW_FORM_sdata numbers.

Appendix 4 gives algorithms for encoding and decoding these forms.

7.7 Location Descriptions

7.7.1 Location Expressions

A location expression is stored in a block of contiguous bytes. The bytes form a set of
operations. Each location operation has a 1-byte code that identifies that operation. Operations
can be followed by one or more bytes of additional data. All operations in a location expression
are concatenated from left to right. The encodings for the operations in a location expression are
described in Figures 22 and 23.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 70
Industry Review Draft

DWARF Debugging Information Format

_ ___________________________________
Number First byte Second byte_ ___________________________________

2 2 —
-2 0x7e —

127 127+0x80 0
-127 1+0x80 0x7f
128 0+0x80 1

-128 0+0x80 0x7f
129 1+0x80 1

-129 0x7f+0x80 0x7e_ ___________________________________

Figure 21. Examples of signed LEB128 encodings
_ ___
Operation Code No. of Operands Notes_ ___
DW_OP_addr 0x03 1 constant address (size target specific)
DW_OP_deref 0x06 0
DW_OP_const1u 0x08 1 1-byte constant
DW_OP_const1s 0x09 1 1-byte constant
DW_OP_const2u 0x0a 1 2-byte constant
DW_OP_const2s 0x0b 1 2-byte constant
DW_OP_const4u 0x0c 1 4-byte constant
DW_OP_const4s 0x0d 1 4-byte constant
DW_OP_const8u 0x0e 1 8-byte constant
DW_OP_const8s 0x0f 1 8-byte constant
DW_OP_constu 0x10 1 ULEB128 constant
DW_OP_consts 0x11 1 SLEB128 constant
DW_OP_dup 0x12 0
DW_OP_drop 0x13 0
DW_OP_over 0x14 0
DW_OP_pick 0x15 1 1-byte stack index
DW_OP_swap 0x16 0
DW_OP_rot 0x17 0
DW_OP_xderef 0x18 0
DW_OP_abs 0x19 0
DW_OP_and 0x1a 0
DW_OP_div 0x1b 0
DW_OP_minus 0x1c 0
DW_OP_mod 0x1d 0
DW_OP_mul 0x1e 0
DW_OP_neg 0x1f 0
DW_OP_not 0x20 0
DW_OP_or 0x21 0
DW_OP_plus 0x22 0
DW_OP_plus_uconst 0x23 1 ULEB128 addend
DW_OP_shl 0x24 0
DW_OP_shr 0x25 0
DW_OP_shra 0x26 0_ ___

Figure 22. Location operation encodings, part 1

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 71
Industry Review Draft

DWARF Debugging Information Format

_ ___
Operation Code No. of Operands Notes_ ___
DW_OP_xor 0x27 0
DW_OP_skip 0x2f 1 signed 2-byte constant
DW_OP_bra 0x28 1 signed 2-byte constant
DW_OP_eq 0x29 0
DW_OP_ge 0x2a 0
DW_OP_gt 0x2b 0
DW_OP_le 0x2c 0
DW_OP_lt 0x2d 0
DW_OP_ne 0x2e 0
DW_OP_lit0 0x30 0 literals 0..31 = (DW_OP_LIT0literal)
DW_OP_lit1 0x31 0
...
DW_OP_lit31 0x4f 0
DW_OP_reg0 0x50 0 reg 0..31 = (DW_OP_REG0regnum)
DW_OP_reg1 0x51 0
...
DW_OP_reg31 0x6f 0
DW_OP_breg0 0x70 1 SLEB128 offset
DW_OP_breg1 0x71 1 base reg 0..31 = (DW_OP_BREG0regnum)
...
DW_OP_breg31 0x8f 1
DW_OP_regx 0x90 1 ULEB128 register
DW_OP_fbreg 0x91 1 SLEB128 offset
DW_OP_bregx 0x92 2 ULEB128 register followed by SLEB128 offset
DW_OP_piece 0x93 1 ULEB128 size of piece addressed
DW_OP_deref_size 0x94 1 1-byte size of data retrieved
DW_OP_xderef_size 0x95 1 1-byte size of data retrieved
DW_OP_nop 0x96 0
DW_OP_lo_user 0xe0
DW_OP_hi_user 0xff_ ___

Figure 23. Location operation encodings, part 2

7.7.2 Location Lists

Each entry in a location list consists of two relative addresses followed by a 2-byte length,
followed by a block of contiguous bytes. The length specifies the number of bytes in the block
that follows. The two addresses are the same size as used by DW_FORM_addr on the target
machine.

7.8 Base Type Encodings

The values of the constants used in the DW_AT_encoding attribute are given in Figure 24.

7.9 Accessibility Codes

The encodings of the constants used in the DW_AT_accessibility attribute are given in
Figure 25.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 72
Industry Review Draft

DWARF Debugging Information Format

_ _________________________________
Base type encoding name Value_ _________________________________
DW_ATE_address 0x1
DW_ATE_boolean 0x2
DW_ATE_complex_float 0x3
DW_ATE_float 0x4
DW_ATE_signed 0x5
DW_ATE_signed_char 0x6
DW_ATE_unsigned 0x7
DW_ATE_unsigned_char 0x8
DW_ATE_lo_user 0x80
DW_ATE_hi_user 0xff_ _________________________________

Figure 24. Base type encoding values
_ ________________________________
Accessibility code name Value_ ________________________________
DW_ACCESS_public 1
DW_ACCESS_protected 2
DW_ACCESS_private 3_ ________________________________

Figure 25. Accessibility encodings

7.10 Visibility Codes

The encodings of the constants used in the DW_AT_visibility attribute are given in Figure
26.

_ ____________________________
Visibility code name Value_ ____________________________
DW_VIS_local 1
DW_VIS_exported 2
DW_VIS_qualified 3_ ____________________________

Figure 26. Visibility encodings

7.11 Virtuality Codes

The encodings of the constants used in the DW_AT_virtuality attribute are given in Figure
27.

_ __
Virtuality code name Value_ __
DW_VIRTUALITY_none 0
DW_VIRTUALITY_virtual 1
DW_VIRTUALITY_pure_virtual 2_ __

Figure 27. Virtuality encodings

7.12 Source Languages

The encodings for source languages are given in Figure 28. Names marked with † and their
associated values are reserved, but the languages they represent are not supported in DWARF
Version 2.

7.13 Address Class Encodings

The value of the common address class encoding DW_ADDR_none is 0.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 73
Industry Review Draft

DWARF Debugging Information Format

Language name Value___________________________________
DW_LANG_C89 0x0001
DW_LANG_C 0x0002
DW_LANG_Ada83† 0x0003
DW_LANG_C_plus_plus 0x0004
DW_LANG_Cobol74† 0x0005
DW_LANG_Cobol85† 0x0006
DW_LANG_Fortran77 0x0007
DW_LANG_Fortran90 0x0008
DW_LANG_Pascal83 0x0009
DW_LANG_Modula2 0x000a
DW_LANG_lo_user 0x8000
DW_LANG_hi_user 0xffff___________________________________

Figure 28. Language encodings

7.14 Identifier Case

The encodings of the constants used in the DW_AT_identifier_case attribute are given in
Figure 29.

_ ____________________________________
Identifier Case Name Value_ ____________________________________
DW_ID_case_sensitive 0
DW_ID_up_case 1
DW_ID_down_case 2
DW_ID_case_insensitive 3_ ____________________________________

Figure 29. Identifier case encodings

7.15 Calling Convention Encodings

The encodings for the values of the DW_AT_calling_convention attribute are given in
Figure 30.

_ ______________________________
Calling Convention Name Value_ ______________________________
DW_CC_normal 0x1
DW_CC_program 0x2
DW_CC_nocall 0x3
DW_CC_lo_user 0x40
DW_CC_hi_user 0xff_ ______________________________

Figure 30. Calling convention encodings

7.16 Inline Codes

The encodings of the constants used in the DW_AT_inline attribute are given in Figure 31.
_ __
Inline Code Name Value_ __
DW_INL_not_inlined 0
DW_INL_inlined 1
DW_INL_declared_not_inlined 2
DW_INL_declared_inlined 3_ __

Figure 31. Inline encodings

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 74
Industry Review Draft

DWARF Debugging Information Format

7.17 Array Ordering

The encodings for the values of the order attributes of arrays is given in Figure 32.
_ ____________________________
Ordering name Value_ ____________________________
DW_ORD_row_major 0
DW_ORD_col_major 1_ ____________________________

Figure 32. Ordering encodings

7.18 Discriminant Lists

The descriptors used in the DW_AT_dicsr_list attribute are encoded as 1-byte constants.
The defined values are presented in Figure 33.

_ ________________________
Descriptor Name Value_ ________________________
DW_DSC_label 0
DW_DSC_range 1_ ________________________

Figure 33. Discriminant descriptor encodings

7.19 Name Lookup Table

Each set of entries in the table of global names contained in the .debug_pubnames section
begins with a header consisting of: a 4-byte length containing the length of the set of entries for
this compilation unit, not including the length field itself; a 2-byte version identifier containing
the value 2 for DWARF Version 2; a 4-byte offset into the .debug_info section; and a 4-byte
length containing the size in bytes of the contents of the .debug_info section generated to
represent this compilation unit. This header is followed by a series of tuples. Each tuple consists
of a 4-byte offset followed by a string of non-null bytes terminated by one null byte. Each set is
terminated by a 4-byte word containing the value 0.

7.20 Address Range Table

Each set of entries in the table of address ranges contained in the .debug_aranges section
begins with a header consisting of: a 4-byte length containing the length of the set of entries for
this compilation unit, not including the length field itself; a 2-byte version identifier containing
the value 2 for DWARF Version 2; a 4-byte offset into the .debug_info section; a 1-byte
unsigned integer containing the size in bytes of an address (or the offset portion of an address for
segmented addressing) on the target system; and a 1-byte unsigned integer containing the size in
bytes of a segment descriptor on the target system. This header is followed by a series of tuples.
Each tuple consists of an address and a length, each in the size appropriate for an address on the
target architecture. The first tuple following the header in each set begins at an offset that is a
multiple of the size of a single tuple (that is, twice the size of an address). The header is padded,
if necessary, to the appropriate boundary. Each set of tuples is terminated by a 0 for the address
and 0 for the length.

7.21 Line Number Information

The sizes of the integers used in the line number and call frame information sections are as
follows:

sbyte Signed 1-byte value.

ubyte Unsigned 1-byte value.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 75
Industry Review Draft

DWARF Debugging Information Format

uhalf Unsigned 2-byte value.

sword Signed 4-byte value.

uword Unsigned 4-byte value.

The version number in the statement program prologue is 2 for DWARF Version 2. The boolean
values ‘‘true’’ and ‘‘false’’ used by the statement information program are encoded as a single
byte containing the value 0 for ‘‘false,’’ and a non-zero value for ‘‘true.’’ The encodings for the
pre-defined standard opcodes are given in Figure 34.

_ _____________________________________
Opcode Name Value_ _____________________________________
DW_LNS_copy 1
DW_LNS_advance_pc 2
DW_LNS_advance_line 3
DW_LNS_set_file 4
DW_LNS_set_column 5
DW_LNS_negate_stmt 6
DW_LNS_set_basic_block 7
DW_LNS_const_add_pc 8
DW_LNS_fixed_advance_pc 9_ _____________________________________

Figure 34. Standard Opcode Encodings

The encodings for the pre-defined extended opcodes are given in Figure 35.
_ ________________________________
Opcode Name Value_ ________________________________
DW_LNE_end_sequence 1
DW_LNE_set_address 2
DW_LNE_define_file 3_ ________________________________

Figure 35. Extended Opcode Encodings

7.22 Macro Information

The source line numbers and source file indices encoded in the macro information section are
represented as unsigned LEB128 numbers as are the constants in an
DW_MACINFO_vendor_ext entry. The macinfo type is encoded as a single byte. The
encodings are given in Figure 36.

_ __________________________________
Macinfo Type Name Value_ __________________________________
DW_MACINFO_define 1
DW_MACINFO_undef 2
DW_MACINFO_start_file 3
DW_MACINFO_end_file 4
DW_MACINFO_vendor_ext 255_ __________________________________

Figure 36. Macinfo Type Encodings

7.23 Call Frame Information

The value of the CIE id in the CIE header is 0xffffffff. The initial value of the CIE version
number is 1.

Call frame instructions are encoded in one or more bytes. The primary opcode is encoded in the
high order two bits of the first byte (that is, opcode = byte >> 6). An operand or extended opcode

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 76
Industry Review Draft

DWARF Debugging Information Format

may be encoded in the low order 6 bits. Additional operands are encoded in subsequent bytes.
The instructions and their encodings are presented in Figure 37.
_ ___
Instruction High Low Operand 1 Operand 2

2 Bits 6 Bits_ ___
DW_CFA_advance_loc 0x1 delta
DW_CFA_offset 0x2 register ULEB128 offset
DW_CFA_restore 0x3 register
DW_CFA_set_loc 0 0x01 address
DW_CFA_advance_loc1 0 0x02 1-byte delta
DW_CFA_advance_loc2 0 0x03 2-byte delta
DW_CFA_advance_loc4 0 0x04 4-byte delta
DW_CFA_offset_extended 0 0x05 ULEB128 register ULEB128 offset
DW_CFA_restore_extended 0 0x06 ULEB128 register
DW_CFA_undefined 0 0x07 ULEB128 register
DW_CFA_same_value 0 0x08 ULEB128 register
DW_CFA_register 0 0x09 ULEB128 register ULEB128 register
DW_CFA_remember_state 0 0x0a
DW_CFA_restore_state 0 0x0b
DW_CFA_def_cfa 0 0x0c ULEB128 register ULEB128 offset
DW_CFA_def_cfa_register 0 0x0d ULEB128 register
DW_CFA_def_cfa_offset 0 0x0e ULEB128 offset
DW_CFA_nop 0 0
DW_CFA_lo_user 0 0x1c
DW_CFA_hi_user 0 0x3f_ ___

Figure 37. Call frame instruction encodings

7.24 Dependencies

The debugging information in this format is intended to exist in the .debug_abbrev,
.debug_aranges, .debug_frame, .debug_info, .debug_line, .debug_loc,
.debug_macinfo, .debug_pubnames and .debug_str sections of an object file. The
information is not word-aligned, so the assembler must provide a way for the compiler to produce
2-byte and 4-byte quantities without alignment restrictions, and the linker must be able to relocate
a 4-byte reference at an arbitrary alignment. In target architectures with 64-bit addresses, the
assembler and linker must similarly handle 8-byte references at arbitrary alignments.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 77
Industry Review Draft

DWARF Debugging Information Format

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 78
Industry Review Draft

DWARF Debugging Information Format

8. FUTURE DIRECTIONS

The UNIX International Programming Languages SIG is working on a specification for a set of
interfaces for reading DWARF information, that will hide changes in the representation of that
information from its consumers. It is hoped that using these interfaces will make the transition
from DWARF Version 1 to Version 2 much simpler and will make it easier for a single consumer
to support objects using either Version 1 or Version 2 DWARF.

A draft of this specification is available for review from UNIX International. The Programming
Languages SIG wishes to stress, however, that the specification is still in flux.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 79
Industry Review Draft

DWARF Debugging Information Format

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 80
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 -- Current Attributes by Tag Value

The list below enumerates the attributes that are most applicable to each type of debugging
information entry. DWARF does not in general require that a given debugging information entry
contain a particular attribute or set of attributes. Instead, a DWARF producer is free to generate
any, all, or none of the attributes described in the text as being applicable to a given entry. Other
attributes (both those defined within this document but not explicitly associated with the entry in
question, and new, vendor-defined ones) may also appear in a given debugging entry. Therefore,
the list may be taken as instructive, but cannot be considered definitive.

_ ___
TAG NAME APPLICABLE ATTRIBUTES_ ___
DW_TAG_access_declaration DECL†

DW_AT_accessibility
DW_AT_name
DW_AT_sibling_ ___

DW_TAG_array_type DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_declaration
DW_AT_name
DW_AT_ordering
DW_AT_sibling
DW_AT_start_scope
DW_AT_stride_size
DW_AT_type
DW_AT_visibility_ ___

DW_TAG_base_type DW_AT_bit_offset
DW_AT_bit_size
DW_AT_byte_size
DW_AT_encoding
DW_AT_name
DW_AT_sibling_ ___

DW_TAG_catch_block DW_AT_abstract_origin
DW_AT_high_pc
DW_AT_low_pc
DW_AT_segment
DW_AT_sibling_ ___

† DW_AT_decl_column, DW_AT_decl_file, DW_AT_decl_line.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 81
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES___
DW_TAG_class_type DECL

DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_declaration
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT_visibility___

DW_TAG_common_block DECL
DW_AT_declaration
DW_AT_location
DW_AT_name
DW_AT_sibling
DW_AT_visibility___

DW_TAG_common_inclusion DECL
DW_AT_common_reference
DW_AT_declaration
DW_AT_sibling
DW_AT_visibility___

DW_TAG_compile_unit DW_AT_base_types
DW_AT_comp_dir
DW_AT_identifier_case
DW_AT_high_pc
DW_AT_language
DW_AT_low_pc
DW_AT_macro_info
DW_AT_name
DW_AT_producer
DW_AT_sibling
DW_AT_stmt_list___

DW_TAG_const_type DW_AT_sibling
DW_AT_type___

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 82
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES___
DW_TAG_constant DECL

DW_AT_accessibility
DW_AT_constant_value
DW_AT_declaration
DW_AT_external
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT_type
DW_AT_visibility___

DW_TAG_entry_point DW_AT_address_class
DW_AT_low_pc
DW_AT_name
DW_AT_return_addr
DW_AT_segment
DW_AT_sibling
DW_AT_static_link
DW_AT_type___

DW_TAG_enumeration_type DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_declaration
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT_visibility___

DW_TAG_enumerator DECL
DW_AT_const_value
DW_AT_name
DW_AT_sibling___

DW_TAG_file_type DECL
DW_AT_abstract_origin
DW_AT_byte_size
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT_type
DW_AT_visibility___

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 83
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

_ __
TAG NAME APPLICABLE ATTRIBUTES_ __
DW_TAG_formal_parameter DECL

DW_AT_abstract_origin
DW_AT_artificial
DW_AT_default_value
DW_AT_is_optional
DW_AT_location
DW_AT_name
DW_AT_segment
DW_AT_sibling
DW_AT_type
DW_AT_variable_parameter_ __

DW_TAG_friend DECL
DW_AT_abstract_origin
DW_AT_friend
DW_AT_sibling_ __

DW_TAG_imported_declaration DECL
DW_AT_accessibility
DW_AT_import
DW_AT_name
DW_AT_sibling
DW_AT_start_scope_ __

DW_TAG_inheritance DECL
DW_AT_accessibility
DW_AT_data_member_location
DW_AT_sibling
DW_AT_type
DW_AT_virtuality_ __

DW_TAG_inlined_subroutine DECL
DW_AT_abstract_origin
DW_AT_high_pc
DW_AT_low_pc
DW_AT_segment
DW_AT_sibling
DW_AT_return_addr
DW_AT_start_scope_ __

DW_TAG_label DW_AT_abstract_origin
DW_AT_low_pc
DW_AT_name
DW_AT_segment
DW_AT_start_scope
DW_AT_sibling_ __

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 84
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

_ __
TAG NAME APPLICABLE ATTRIBUTES_ __
DW_TAG_lexical_block DW_AT_abstract_origin

DW_AT_high_pc
DW_AT_low_pc
DW_AT_name
DW_AT_segment
DW_AT_sibling_ __

DW_TAG_member DECL
DW_AT_accessibility
DW_AT_byte_size
DW_AT_bit_offset
DW_AT_bit_size
DW_AT_data_member_location
DW_AT_declaration
DW_AT_name
DW_AT_sibling
DW_AT_type
DW_AT_visibility_ __

DW_TAG_module DECL
DW_AT_accessibility
DW_AT_declaration
DW_AT_high_pc
DW_AT_low_pc
DW_AT_name
DW_AT_priority
DW_AT_segment
DW_AT_sibling
DW_AT_visibility_ __

DW_TAG_namelist DECL
DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_declaration
DW_AT_sibling
DW_AT_visibility_ __

DW_TAG_namelist_item DECL
DW_AT_namelist_item
DW_AT_sibling_ __

DW_TAG_packed_type DW_AT_sibling
DW_AT_type_ __

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 85
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

_ ___
TAG NAME APPLICABLE ATTRIBUTES_ ___
DW_TAG_pointer_type DW_AT_address_class

DW_AT_sibling
DW_AT_type_ ___

DW_TAG_ptr_to_member_type DECL
DW_AT_abstract_origin
DW_AT_address_class
DW_AT_containing_type
DW_AT_declaration
DW_AT_name
DW_AT_sibling
DW_AT_type
DW_AT_use_location
DW_AT_visibility_ ___

DW_TAG_reference_type DW_AT_address_class
DW_AT_sibling
DW_AT_type_ ___

DW_TAG_set_type DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_declaration
DW_AT_name
DW_AT_start_scope
DW_AT_sibling
DW_AT_type
DW_AT_visibility_ ___

DW_TAG_string_type DECL
DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_byte_size
DW_AT_declaration
DW_AT_name
DW_AT_segment
DW_AT_sibling
DW_AT_start_scope
DW_AT_string_length
DW_AT_visibility_ ___

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 86
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

_ ___
TAG NAME APPLICABLE ATTRIBUTES_ ___
DW_TAG_structure_type DECL

DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_declaration
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT_visibility_ ___

DW_TAG_subprogram DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_address_class
DW_AT_artificial
DW_AT_calling_convention
DW_AT_declaration
DW_AT_external
DW_AT_frame_base
DW_AT_high_pc
DW_AT_inline
DW_AT_low_pc
DW_AT_name
DW_AT_prototyped
DW_AT_return_addr
DW_AT_segment
DW_AT_sibling
DW_AT_specification
DW_AT_start_scope
DW_AT_static_link
DW_AT_type
DW_AT_visibility
DW_AT_virtuality
DW_AT_vtable_elem_location_ ___

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 87
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

_ ___
TAG NAME APPLICABLE ATTRIBUTES_ ___
DW_TAG_subrange_type DECL

DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_count
DW_AT_declaration
DW_AT_lower_bound
DW_AT_name
DW_AT_sibling
DW_AT_type
DW_AT_upper_bound
DW_AT_visibility_ ___

DW_TAG_subroutine_type DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_address_class
DW_AT_declaration
DW_AT_name
DW_AT_prototyped
DW_AT_sibling
DW_AT_start_scope
DW_AT_type
DW_AT_visibility_ ___

DW_TAG_template_type_param DECL
DW_AT_name
DW_AT_sibling
DW_AT_type_ ___

DW_TAG_template_value_param DECL
DW_AT_name
DW_AT_const_value
DW_AT_sibling
DW_AT_type_ ___

DW_TAG_thrown_type DECL
DW_AT_sibling
DW_AT_type_ ___

DW_TAG_try_block DW_AT_abstract_origin
DW_AT_high_pc
DW_AT_low_pc
DW_AT_segment
DW_AT_sibling_ ___

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 88
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

_ __
TAG NAME APPLICABLE ATTRIBUTES_ __
DW_TAG_typedef DECL

DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_declaration
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT_type
DW_AT_visibility_ __

DW_TAG_union_type DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_declaration
DW_AT_friends
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT_visibility_ __

DW_TAG_unspecified_parameters DECL
DW_AT_abstract_origin
DW_AT_artificial
DW_AT_sibling_ __

DW_TAG_variable DECL
DW_AT_accessibility
DW_AT_constant_value
DW_AT_declaration
DW_AT_external
DW_AT_location
DW_AT_name
DW_AT_segment
DW_AT_sibling
DW_AT_specification
DW_AT_start_scope
DW_AT_type
DW_AT_visibility_ __

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 89
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

_ __
TAG NAME APPLICABLE ATTRIBUTES_ __
DW_TAG_variant DECL

DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_declaration
DW_AT_discr_list
DW_AT_discr_value
DW_AT_sibling_ __

DW_TAG_variant_part DECL
DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_declaration
DW_AT_discr
DW_AT_sibling
DW_AT_type_ __

DW_TAG_volatile_type DW_AT_sibling
DW_AT_type_ __

DW_TAG_with_statement DW_AT_accessibility
DW_AT_address_class
DW_AT_declaration
DW_AT_high_pc
DW_AT_location
DW_AT_low_pc
DW_AT_segment
DW_AT_sibling
DW_AT_type
DW_AT_visibility_ __

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 90
Industry Review Draft

DWARF Debugging Information Format

Appendix 2 -- Organization of Debugging Information

The following diagram depicts the relationship of the abbreviation tables contained in the
.debug_abbrev section to the information contained in the .debug_info section. Values
are given in symbolic form, where possible.

1
DW_TAG_compile_unit
DW_CHILDREN_yes
DW_AT_name DW_FORM_string
DW_AT_producer DW_FORM_string
DW_AT_compdir DW_FORM_string
DW_AT_language DW_FORM_data1
DW_AT_low_poc DW_FORM_addr
DW_AT_high_pc DW_FORM_addr
DW_AT_stmt_list DW_FORM_indirect
0 0

4
"POINTER"

3

4
DW_TAG_typedef
DW_CHILDREN_no
DW_AT_name DW_FORM_string
DW_AT_type DW_FORM_ref4
0 0

0

0

e2

e2:

2

...

4
"strp"

e2

...

length

4

a1 (abbreviation table offset)

4
a1 (abbreviation table offset)

2
DW_TAG_base_type
DW_CHILDREN_no
DW_AT_name DW_FORM_string
DW_AT_encoding DW_FORM_data1
DW_AT_byte_size DW_FORM_data1
0 0

a1:
length Abbreviation Table - .debug_abbrev

Compilation Unit 1 - .debug_info

Compilation Unit 2 - .debug_info

2

1
"myfile.c"
"Best Compiler Corp: Version 1.3"
"mymachine:/home/mydir/src:"
DW_LANG_C89
0x0
0x55
DW_FORM_data4
0x0

2

3
DW_TAG_pointer_type
DW_CHILDREN_no
DW_AT_type DW_FORM_ref4
0 0

"char"
DW_ATE_unsigned_char
1

e1

e1:

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 91
Industry Review Draft

DWARF Debugging Information Format

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 92
Industry Review Draft

DWARF Debugging Information Format

Appendix 3 -- Statement Program Examples

Consider this simple source file and the resulting machine code for the Intel 8086 processor:

1: int
2: main()

0x239: push pb
0x23a: mov bp,sp

3: {
4: printf("Omit needless words\n");

0x23c: mov ax,0xaa
0x23f: push ax
0x240: call _printf
0x243: pop cx

5: exit(0);
0x244: xor ax,ax
0x246: push ax
0x247: call _exit
0x24a: pop cx

6: }
0x24b: pop bp
0x24c: ret

7:
0x24d:

If the statement program prologue specifies the following:

minimum_instruction_length 1
opcode_base 10
line_base 1
line_range 15

Then one encoding of the statement program would occupy 12 bytes (the opcode SPECIAL(m,
n) indicates the special opcode generated for a line increment of m and an address increment of
n):

Opcode Operand Byte Stream_ __
DW_LNS_advance_pc LEB128(0x239) 0x2, 0xb9, 0x04
SPECIAL(2, 0) 0xb
SPECIAL(2, 3) 0x38
SPECIAL(1, 8) 0x82
SPECIAL(1, 7) 0x73
DW_LNS_advance_pc LEB128(2) 0x2, 0x2
DW_LNE_end_sequence 0x0, 0x1, 0x1

An alternate encoding of the same program using standard opcodes to advance the program
counter would occupy 22 bytes:

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 93
Industry Review Draft

DWARF Debugging Information Format

Opcode Operand Byte Stream_ ___
DW_LNS_fixed_advance_pc 0x239 0x9, 0x39, 0x2
SPECIAL(2, 0) 0xb
DW_LNS_fixed_advance_pc 0x3 0x9, 0x3, 0x0
SPECIAL(2, 0) 0xb
DW_LNS_fixed_advance_pc 0x8 0x9, 0x8, 0x0
SPECIAL(1, 0) 0xa
DW_LNS_fixed_advance_pc 0x7 0x9, 0x7, 0x0
SPECIAL(1, 0) 0xa
DW_LNS_fixed_advance_pc 0x2 0x9, 0x2, 0x0
DW_LNE_end_sequence 0x0, 0x1, 0x1

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 94
Industry Review Draft

DWARF Debugging Information Format

Appendix 4 -- Encoding and decoding variable length data

Here are algorithms expressed in a C-like pseudo-code to encode and decode signed and unsigned
numbers in LEB128:

Encode an unsigned integer:

do
{

byte = low order 7 bits of value;
value >>= 7;
if (value != 0) /* more bytes to come */

set high order bit of byte;
emit byte;

} while (value != 0);

Encode a signed integer:

more = 1;
negative = (value < 0);
size = no. of bits in signed integer;
while(more)
{

byte = low order 7 bits of value;
value >>= 7;
/* the following is unnecessary if the implementation of >>=
* uses an arithmetic rather than logical shift for a signed
* left operand
*/
if (negative)

/* sign extend */
value |= - (1 << (size - 7));

/* sign bit of byte is 2nd high order bit (0x40) */
if ((value == 0 && sign bit of byte is clear) ||

(value == -1 && sign bit of byte is set))
more = 0;

else
set high order bit of byte;

emit byte;
}

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 95
Industry Review Draft

DWARF Debugging Information Format

Decode unsigned LEB128 number:

result = 0;
shift = 0;
while(true)
{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
if (high order bit of byte == 0)

break;
shift += 7;

}

Decode signed LEB128 number:

result = 0;
shift = 0;
size = no. of bits in signed integer;
while(true)
{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;
/* sign bit of byte is 2nd high order bit (0x40) */
if (high order bit of byte == 0)

break;
}
if ((shift < size) && (sign bit of byte is set))

/* sign extend */
result |= - (1 << shift);

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 96
Industry Review Draft

DWARF Debugging Information Format

Appendix 5 -- Call Frame Information Examples

The following example uses a hypothetical RISC machine in the style of the Motorola 88000.

• Memory is byte addressed.

• Instructions are all 4-bytes each and word aligned.

• Instruction operands are typically of the form:

<destination reg> <source reg> <constant>

• The address for the load and store instructions is computed by adding the contents of the
source register with the constant.

• There are 8 4-byte registers:

R0 always 0
R1 holds return address on call
R2-R3 temp registers (not preserved on call)
R4-R6 preserved on call
R7 stack pointer.

• The stack grows in the negative direction.

The following are two code fragments from a subroutine called foo that uses a frame pointer (in
addition to the stack pointer.) The first column values are byte addresses.

;; start prologue
foo sub R7, R7, <fsize> ; Allocate frame
foo+4 store R1, R7, (<fsize>-4) ; Save the return address
foo+8 store R6, R7, (<fsize>-8) ; Save R6
foo+12 add R6, R7, 0 ; R6 is now the Frame ptr
foo+16 store R4, R6, (<fsize>-12) ; Save a preserve reg.

;; This subroutine does not change R5
...
;; Start epilogue (R7 has been returned to entry value)

foo+64 load R4, R6, (<fsize>-12) ; Restore R4
foo+68 load R6, R7, (<fsize>-8) ; Restore R6
foo+72 load R1, R7, (<fsize>-4) ; Restore return address
foo+76 add R7, R7, <fsize> ; Deallocate frame
foo+80 jump R ; Return
foo+84

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 97
Industry Review Draft

DWARF Debugging Information Format

The table for the foo subroutine is as follows. It is followed by the corresponding fragments
from the .debug_frame section.

Loc CFA R0 R1 R2 R3 R4 R5 R6 R7 R8
foo [R7]+0 s u u u s s s s r1
foo+4 [R7]+fsize s u u u s s s s r1
foo+8 [R7]+fsize s u u u s s s s c4
foo+12 [R7]+fsize s u u u s s c8 s c4
foo+16 [R6]+fsize s u u u s s c8 s c4
foo+20 [R6]+fsize s u u u c12 s c8 s c4
foo+64 [R6]+fsize s u u u c12 s c8 s c4
foo+68 [R6]+fsize s u u u s s c8 s c4
foo+72 [R7]+fsize s u u u s s s s c4
foo+76 [R7]+fsize s u u u s s s s r1
foo+80 [R7]+0 s u u u s s s s r1
notes:
1. R8 is the return address
2. s = same_value rule
3. u = undefined rule
4. rN = register(N) rule
5. cN = offset(N) rule

Common Information Entry (CIE):

cie 32 ; length
cie+4 0xffffffff ; CIE_id
cie+8 1 ; version
cie+9 0 ; augmentation
cie+10 4 ; code_alignment_factor
cie+11 4 ; data_alignment_factor
cie+12 8 ; R8 is the return addr.
cie+13 DW_CFA_def_cfa (7, 0) ; CFA = [R7]+0
cie+16 DW_CFA_same_value (0) ; R0 not modified (=0)
cie+18 DW_CFA_undefined (1) ; R1 scratch
cie+20 DW_CFA_undefined (2) ; R2 scratch
cie+22 DW_CFA_undefined (3) ; R3 scratch
cie+24 DW_CFA_same_value (4) ; R4 preserve
cie+26 DW_CFA_same_value (5) ; R5 preserve
cie+28 DW_CFA_same_value (6) ; R6 preserve
cie+30 DW_CFA_same_value (7) ; R7 preserve
cie+32 DW_CFA_register (8, 1) ; R8 is in R1
cie+35 DW_CFA_nop ; padding
cie+36

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 98
Industry Review Draft

DWARF Debugging Information Format

Frame Description Entry (FDE):

fde 40 ; length
fde+4 cie ; CIE_ptr
fde+8 foo ; initial_location
fde+12 84 ; address_range
fde+16 DW_CFA_advance_loc(1) ; instructions
fde+17 DW_CFA_def_cfa_offset(<fsize>/4) ; assuming <fsize> < 512
fde+19 DW_CFA_advance_loc(1)
fde+20 DW_CFA_offset(8,1)
fde+22 DW_CFA_advance_loc(1)
fde+23 DW_CFA_offset(6,2)
fde+25 DW_CFA_advance_loc(1)
fde+26 DW_CFA_def_cfa_register(6)
fde+28 DW_CFA_advance_loc(1)
fde+29 DW_CFA_offset(4,3)
fde+31 DW_CFA_advance_loc(11)
fde+32 DW_CFA_restore(4)
fde+33 DW_CFA_advance_loc(1)
fde+34 DW_CFA_restore(6)
fde+35 DW_CFA_def_cfa_register(7)
fde+37 DW_CFA_advance_loc(1)
fde+38 DW_CFA_restore(8)
fde+39 DW_CFA_advance_loc(1)
fde+40 DW_CFA_def_cfa_offset(0)
fde+42 DW_CFA_nop ; padding
fde+43 DW_CFA_nop ; padding
fde+44

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 99

Industry Review Draft

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 100

Industry Review Draft

Table of Contents

1. INTRODUCTION 1
1.1 Purpose and Scope 1
1.2 Overview 1
1.3 Vendor Extensibility 2
1.4 Changes from Version 1 2

2. GENERAL DESCRIPTION 5
2.1 The Debugging Information Entry 5
2.2 Attribute Types 5
2.3 Relationship of Debugging Information Entries 7
2.4 Location Descriptions 7
2.5 Types of Declarations 16
2.6 Accessibility of Declarations 16
2.7 Visibility of Declarations 16
2.8 Virtuality of Declarations 17
2.9 Artificial Entries 17
2.10 Target-Specific Addressing Information 17
2.11 Non-Defining Declarations 18
2.12 Declaration Coordinates 18
2.13 Identifier Names 19

3. PROGRAM SCOPE ENTRIES 21
3.1 Compilation Unit Entries 21
3.2 Module Entries 23
3.3 Subroutine and Entry Point Entries 23
3.4 Lexical Block Entries 29
3.5 Label Entries 29
3.6 With Statement Entries 30
3.7 Try and Catch Block Entries 30

4. DATA OBJECT AND OBJECT LIST ENTRIES 31
4.1 Data Object Entries 31
4.2 Common Block Entries 33
4.3 Imported Declaration Entries 33
4.4 Namelist Entries 33

5. TYPE ENTRIES 35
5.1 Base Type Entries 35
5.2 Type Modifier Entries 36
5.3 Typedef Entries 36
5.4 Array Type Entries 37
5.5 Structure, Union, and Class Type Entries 37
5.6 Enumeration Type Entries 43
5.7 Subroutine Type Entries 43
5.8 String Type Entries 44

- i -

5.9 Set Entries 44
5.10 Subrange Type Entries 44
5.11 Pointer to Member Type Entries 45
5.12 File Type Entries 46

6. OTHER DEBUGGING INFORMATION 47
6.1 Accelerated Access 47
6.2 Line Number Information 48
6.3 Macro Information 55
6.4 Call Frame Information 57

7. DATA REPRESENTATION 63
7.1 Vendor Extensibility 63
7.2 Reserved Error Values 63
7.3 Executable Objects and Shared Objects 63
7.4 File Constraints 64
7.5 Format of Debugging Information 64
7.6 Variable Length Data 68
7.7 Location Descriptions 70
7.8 Base Type Encodings 72
7.9 Accessibility Codes 72
7.10 Visibility Codes 73
7.11 Virtuality Codes 73
7.12 Source Languages 73
7.13 Address Class Encodings 73
7.14 Identifier Case 74
7.15 Calling Convention Encodings 74
7.16 Inline Codes 74
7.17 Array Ordering 75
7.18 Discriminant Lists 75
7.19 Name Lookup Table 75
7.20 Address Range Table 75
7.21 Line Number Information 75
7.22 Macro Information 76
7.23 Call Frame Information 76
7.24 Dependencies 77

8. FUTURE DIRECTIONS 79

Appendix 1 -- Current Attributes by Tag Value 81

Appendix 2 -- Organization of Debugging Information 91

Appendix 3 -- Statement Program Examples 93

Appendix 4 -- Encoding and decoding variable length data 95

Appendix 5 -- Call Frame Information Examples 97

- ii -

List of Figures

Figure 1. Tag names 5

Figure 2. Attribute names 6

Figure 3. Accessibility codes 16

Figure 4. Visibility codes 17

Figure 5. Virtuality codes 17

Figure 6. Example address class codes 18

Figure 7. Language names 21

Figure 8. Identifier case codes 22

Figure 9. Inline codes 27

Figure 10. Encoding attribute values 35

Figure 11. Type modifier tags 36

Figure 12. Array ordering 37

Figure 13. Discriminant descriptor values 42

Figure 14. Tag encodings (part 1) 66

Figure 15. Tag encodings (part 2) 67

Figure 16. Child determination encodings 67

Figure 17. Attribute encodings, part 1 68

Figure 18. Attribute encodings, part 2 69

Figure 19. Attribute form encodings 70

Figure 20. Examples of unsigned LEB128 encodings 70

Figure 21. Examples of signed LEB128 encodings 71

Figure 22. Location operation encodings, part 1 71

Figure 23. Location operation encodings, part 2 72

Figure 24. Base type encoding values 73

Figure 25. Accessibility encodings 73

Figure 26. Visibility encodings 73

Figure 27. Virtuality encodings 73

Figure 28. Language encodings 74

- iii -

Figure 29. Identifier case encodings 74

Figure 30. Calling convention encodings 74

Figure 31. Inline encodings 74

Figure 32. Ordering encodings 75

Figure 33. Discriminant descriptor encodings 75

Figure 34. Standard Opcode Encodings 76

Figure 35. Extended Opcode Encodings 76

Figure 36. Macinfo Type Encodings 76

Figure 37. Call frame instruction encodings 77

- iv -

