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ADAPTATION OF THE SYSTEM V/386 FILESYSTEM FOR LINUX

Abstract by Paul B. Monday, M.S.

Washington State University

October 1993

Chair: K.C. Wang

Compatibility between operating systems and �lesystems is an essential item when creating a

robust operating system. The Linux operating system is taking the �lesystem compatibility

issue to a new level with its modular integration of �lesystems into the Linux kernel. The

project which accompanies this paper exploits the robust Linux �lesystem to integrate Sys-

tem V/386 �lesystem compatibility into Linux kernel. This paper will discuss issues relative

to the integration of the System V/386 �lesystem support.
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1 Introduction

Operating systems which are in the marketplace and highly commercial usually include 1 or

2 �lesystems to choose from to store and retrieve data. Creating e�cient �lesystems and

making the structure proprietary is often a selling point for one operating system, while the

action sties coexistance with other operating systems. The Linux �lesystem attempts to

remedy this through simple, but highly successful, coding tricks which turns the �lesystem

into a modular block of code. Filesystems are treated as a set of high level and low level

functions. Functions can be added and removed whenever the kernel is rebuilt. Creating new

modules (�lesystems) is simpli�ed also if the programmer can understand a simple concept

of containment which the Linux �lesystem capitalizes on. A case study of how the System

V/386 �lesystem is built, followed by how it is integrated into the Linux kernel is examined

here.

2 System V/386 Release 4.0 Filesystem

The key to adding a �lesystem to Linux is di�erentiating between low level data handling, and

the high level function which is duplicated in other �lesystems. The System V/386 �lesystem

is much like other Unix-like �lesystem, so there were many case studies already coded into

Linux. A ground up approach was taken when adding the System V/386 �lesystem.

First, the data was examined to determine the layout of a System V/386 �lesystem. This

consisted of a high-level overview of a diskette after a mkfs is completed. Next, �ner grained

examination of the data structures used on a �lesystem is completed. Once both of these
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tasks are done, algorithms can be vari�ed on System V/386, then an examination of how to

integrate the new algorithms into Linux must be completed.

I will document the most general cases of a System V/386 �lesystem, as I have not inten-

tionally set out to make special cases of mkfs work when coding the accompanying project

(a user of System V/386 can radically change the structure of a �lesystem with options on

the mkfs command).

Throughout the coding of the SystemV/386 �lesystem I used a reverse engineering approach.

The implementation of the �lesystem will be described in this way also. First a high level

overview will be presented, and I will then work my way into the speci�c block data structures

and organizations.

2.1 General Information

To understand how the �lesystem algorithms manipulate the System V/386 �lesystem, one

must �rst understand how a disk is organized by System V/386. Below, I have listed the

important aspects of a System V/386 �lesystem. First, the Superblock is o�set into the

diskette by 512 bytes. This o�set allows room for a bootblock and initialization. The inodes

follow several blocks after the superblock. This gap allows for System V/386 to keep a list

of bad blocks. I have not implemented this feature in the �lesystem support.

The low-level design of System V/386 di�ers from many other avors of Unix, particularly

Minix, due to the fact that there are no bit maps or zone maps. Rather than keeping a bit

aside for each data block and inode to indicate whether or not it is free, System V/386 keeps

a linked list of free blocks and zeroes out the unused inodes. DOS is similiar to Minix in the
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way the FAT (File Allocation Table) is organized, see the Appendix for details of the Minix

and DOS �lesystem layouts.

The order of the �lesystem is bootblock, superblock, bad block mapping, inodes, and data

blocks. The layout is as follows (a sector is 512k, or 0.5 * block size).

� Sector 1: Bootblock

� Sector 2: Superblock

� Sector 3: Bad block mapping

� Sector 4 to x: Bad block mapping continued

� Sector x + 1 (1k aligned): Inodes

� Sector y: Continuation of inodes

� Sector y + 1 (1k aligned): Data Blocks

� Sector z: All sectors to end of disk are data blocks

2.2 Superblock

The System V/386 superblock is a 512 byte sector which holds information which is con-

stantly changing. This di�ers from other operating systems in that the superblock must be

repeatedly written to disk as blocks and inodes are allocated and deallocated.

The primary structure of the superblock is layed out in the list below, the o�set is in terms

of bytes (8 bits). Some structures which exist in the System V/386 superblock will not be
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used in the Linux implementation. These will not have corresponding �eld names. For the

ones that I do use, �eld names will immediately follow the o�set and will be in parenthesis.

This makes it easier to reference the code which is included in an Appendix. An (*) indicates

that the �eld is later abstracted out to the Linux Superblock.

� o�set 0(isize): Number of blocks in inode list

� o�set 2(fsize): Number of blocks in the volume

� o�set 6(nfree): Number of addresses in free cache

� o�set 8(free): Free block cache

� o�set 208(ninode): Number of inodes in inode cache

� o�set 210(inode ): Free inode cache

� o�set 410: Lock bit (set during block cache manipulation) (*)

� o�set 411: Lock bit (set during inode cache manipulation) (*)

� o�set 412: Super block modi�ed ag (set when dirty) (*)

� o�set 413: Read only ag (*)

� o�set 414(time): Time of last super block modi�cation (*)

� o�set 418: Mounted device information (*)

� o�set 426(tfree): Total free blocks on volume
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� o�set 430(tinode): Total free inodes on volume

� o�set 432: File system name

� o�set 438: File system pack name

� o�set 444: Adjust this to make the size of �lesystem

� o�set 492: State the �lesystem is in (*)

� o�set 496: Filesystems magic number (0xfd187e20)

� o�set 500: Type of new �lesystem

The reason many �elds are not used is simply because of duplication in the Linux operat-

ing system. The lock �elds and modi�cation �elds are also contained in the main Linux

superblock. Since the Linux superblock then contains a pointer to the System V/386 su-

perblock (this will be described later), the System V/386 �elds go unused.

Total free blocks and total free inodes must be tediously kept track of. The �lesystem

updates these �elds in memory with each allocation of a block or an inode. The changes to

the caches are not written to disk immediately, as this would put an unnecessary burden on

resources and misuse one of the features of many unix-like �lesystems, disk caching. The

changes are written to disk upon a umount or when either the block or the inode cache is

re�lled or ushed. The block and inode caches in the �lesystem drive much of the logic

behind the algorithms used to maintain the superblock.
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2.2.1 Free Block Cache

The free block cache is documented very well in [Ba86]. When the �lesystem is made,

the free blocks are organized into a linked structure. The System V/386 �lesystem stores 50

addresses in the block cache. The last address read when blocks are being allocated is a block

number which contains the next 50 addresses which are to be loaded into the cache. With

this implemenatation, to reload the cache, the operating system loads the block pointed to

in the cache, then transfers the addresses which are stored there into the superblock's cache.

Although the initial overhead to build a �lesystem around this idea may be slightly higher

than a bit mapped method, the cache system is a very straightforward method of organizing

the data. The algorithm for allocating blocks in the System V/386 �lesystem follows, assume

that a block is requested from the �lesystem for an unknown reason.

� If tfree=0 then return FAIL

� If nfree=1 and tfree<>1 THEN

{ address=free[0]

{ Read block at address

{ free[0] to free[49] = block[0] to block[49]

� ELSE

{ address = free[nfree]

{ nfree = nfree - 1

� return address
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The algorithm for freeing blocks in the System V/386 �lesystem follows. Assume that the

block to be freed resides at address.

� if nfree=50 THEN

{ read block at address

{ write 50 addresses in free to block

{ nfree = 1

{ free[0] = address

� ELSE

{ free[nfree] = address

{ nfree = nfree + 1

� tfree = tfree + 1

� return

There is one problem with this method which can slow down disk access. I have chosen

to regularly write the superblock between allocations. A worst case scenario would as the

scenario which is written below. This is a case where a few blocks get allocated which force

the cache to be reloaded, then a few blocks get freed which forces the cache to be ushed.

A scenario is as follows.

1. Initial Con�guration of Scenario

� Block Cache (free) contains 1 block (address 24)
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� nfree = 1

2. A block is requested by a user

� nfree = 1 so cache must be reloaded

� Reload cache then return block 24 for user to use

3. A block is returned by a user (address = 100) and nfree is still equal to 50

� Superblock cache is full, write 50 addresses to block 100

� Store the address 100 in the superblock cache and change nfree to 1

4. Go to step 2

The scenario above, although not dangerous, requires repeated disk writing for minimal

erquests. I have implemented this algorithm merely for the sake of safety and to avoid

problems which may occur if the cache is not functioning correctly in the prerelease kernel.

1

2.2.2 Free Inode List

The free inode list is very similiar to the free block list with a couple of major exceptions.

The designers of the System V/386 �lesystem assumed that the inodes would not see as

1
Note: After examining several books on the System V/386 �lesystem after completing the coding

portion of the project, di�erences in the implementation of writing the superblock to disk were noted. I now

believe that it was unwise to repeatedly write the superblock to disk. The slowdown this causes can be quite

substantial, plus, inode updates may not stay in sync with superblock updates. It would be better to throw

out all changes in the case of a critical error, than keeping a list of where data should have been placed.
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much activity as the data blocks. This assumption freed the designers to create a slightly

more time consuming allocation method. The free inodes are not linked together as the data

blocks are. When the time comes to reload the inode cache (100 inode addresses are kept in

the superblock for a typical �lesystem), a linear search is conducted until the cache is full or

all inodes are exhausted. 2

The current implementation and the true implementation di�er in two ways. The �rst is in

the use of the nlink �eld in the inode. My code sets all bits contained in an inode to zero.

The System V/386 implementation sets the nlink �eld to zero, this indicates the inode is

ready to be used again. The second di�erence is in the algorithm to free an inode. The

di�erences are displayed in the free inode algorithm below.

� returnInode.nlink = 0 //This is currently a memset(returnInode,0,sizeof(returnInode))

� return //This return does not occur in the true implememtation

� if ninode = 100 then return

� superblock.ninode ++

� superblock.inode[superblock.ninode]=number of returnInode

� return

2
Note: The implementation of the inode cache in the project versus the true implementation in the

System V/386 �lesystem di�er somewhat, as I discovered just recently, see [Sh87].
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2.3 Inodes

The internal inode representation, as with any Unix system, is the key to the organization of

the �lesytem. The System V/386 �lesystem follows virtually the same format as any other

Unix system, though with some important distinctions. The di�erences will be pointed out

later in the document in the �lesystem comparisons section.

Many of the �elds in the inode structure which resides in the System V/386 �lesystem

are similiar or the same as Linux. Most importantly, the Unix �lesystems appear to be

compatible as far as the mode values go. This takes a level of abstraction away when trying

to think in terms of one �lesystem or another. For example, if the mode �eld contains an

unsigned short value of 0x4000, this indicates a directory, all of the Unix systems I have run

across so far use the same value. Again, an (*) indicates that the �eld is later abstracted

out to the Linux inode.

� o�set 0(mode): Mode and type of �le (*)

� o�set 2(nlink): Number of links to the �le (*)

� o�set 4(uid): File owner's userid (*)

� o�set 6(gid): File's group id (*)

� o�set 8(size): Size, in bytes, of the �le (*)

� o�set 12(addr): Disk block addresses

� o�set 51(gen): File's generation number (*)

� o�set 52(atime): Last time �le accessed (*)
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� o�set 56(mtime): Last time �le modi�ed (*)

� o�set 60(ctime): File creation time (*)

One of the most important topics to be addressed when talking about inodes is how the

inode keeps track of �le contents. The System V/386 �lesystem uses a list of 10 direct

blocks, followed by an indirect block, a double indirect block, and a triple indirect block.

This allows for a maximum �lesize of 33,834 blocks, or 34,646,016 bytes. .This creates an

interesting problem when placing disk addresses into the inode and All direct addresses are

stored as 3 byte values. Throughout the rest of the System V/386 �lesystem, and most

other �lesystems, addresses are stored as long integers, giving four bytes of storage for a

disk address. This peculiarity allows more addresses to be stored in the inode, thus a larger

�lesize. At the same time, the 3 byte addresses could easily be switched to 4 byte addresses,

allowing for a smaller �le, but a larger disk. As it stands, the largest drive that can be

accessed by the inode is 16,777,216 blocks.

2.3.1 Direct Blocks

Figure 1 shows graphically how the block addressing from within the inode works. Direct

blocks are controlled by grabbing the addresses from 0-9 (bytes 0-26 in the addr �eld) and

reading the contents of the blocks referenced by each address.
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Inode Containing Either a Directory or File

mode

links

size

d0

...d9

i0

db0

t0

2 byte

inode

num

14 byte file/dir name

1k block of data(up to 64 entries)

(must include . and ..)

single indirect block contains

256 4byte addresses

pointing to data blocks

double indirect block contains

256 4byte addresses

pointing to indirect blocks

triple indirect blocks contain

256 4 byte addresses

pointing to double indirect blocks

Figure 1: Inode and Data Blocks

2.3.2 Indirect (Single, Double and Triple) Blocks

Figure 1 also displays how the di�erent levels of addressing link to blocks. All the indirect

blocks really do is give us an extra 32 blocks to use for �le space. The double blocks expand

the �lesize by 1024 blocks and the triple indirect blocks expand the �lesize again by 32,768
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blocks. One of the curious things about the System V/386 �lesystem is that the addresses

are stored as long integers in the indirect blocks. Here several addresses per block are lost to

wasted space, since the direct inodes cannot use the 4th byte in each address. It is my belief

that this was left to ease the algorithms which access addresses through indirect blocks, plus

allow an easier way to expand the maximum �le size, since the inodes could be changed

relatively easily to allow for 4 byte addresses.

The algorithms follow for reading the various types of blocks.

2.4 Directory Blocks

Directory blocks are similiar to many other Unix systems. The data blocks pointed to by

the direct and indirect blocks are �lled with records which consist of a inode number and a

�lename. The record is a reference to an inode, this implies that the inode can consist of any

type of Linux �le (directory, data, symlink, etc....) Filenames are restricted to 14 characters.

Figure 1 also displays how a directory block works with an inode. Note that it is exactly the

same as the case that data is stored in the inode, the major di�erence is in the mode �eld,

a di�erent value is stored here.

2.5 System V/386 Filesystem Conclusion

The System V/386 �lesystem is quite popular for schools to use due to the availability of

the code in it's early life, and the volumes of literature which are written on the system as

a whole. For this reason, the �rst half of the project was quite a bit of research, with some

hands on experience. Once the theories were derived from books, it was a simple matter to
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write test programs to examine diskettes at various points as �les are copied to and from

the diskettes.

Once the System V/386 portions were understood, the second phase of the project was

started. This was a matter of determining how the Linux �lesystem used other �lesystems,

and how the System V/386 �lesystem would �t into the Linux system.

3 Linux

Multiple levels of indirection, and robust/dynamic data structures in Linux creates a modular

environment to code new �lesystems into. At the same time, the initial con�guration of Linux

is allowed to leave out support that is not necessary for a particular user's needs. Currently,

Linux contains support for the Microsoft DOS FAT �lesystem, Minix, and several variations

of Minix which are called extended �lesystems. The structures which make this modular

and robust system possible will be discussed here.

The Linux �lesystem would take a considerable amount of time to describe in full detail. For

the purpose of �lesystem integration, only those parts which relate speci�cally to integrating

new �lesystem types will be described. Many other items, like how the Linux cache handles

the �lesystem, are left out since these are irrelevant to handling new �lesystems.

3.1 General Information

The main Linux �lesystem revolves around data bu�ers which remain in memory as long

as a device is mounted. The structures which are kept in memory contain both the Linux

version of a structure, and the original structure read in from the non-Linux �lesystem.
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The resulting Linux-System V/386 �lesystem is really a hybrid version of the System V/386

�lesystem, customized to work alongside Linux' bu�er implementations. It is best to look

at Linux' speci�c structures to see exactly how this customization works.

I will start with the assumption that the user has typed in the correct mount command and

Linux is passing control to the System V/386 speci�c routines. Only minor changes to the

Linux kernel go into doing this, they will be glossed over in the section "Con�guration of

Linux to Include/Exclude Filesystems".

3.2 Superblock Handling

The function containing the setup of the Linux superblock is called sysv read super. Each

�lesystem will have a corresponding function. The purpose is to grab the superblock o� the

physical disk, and set up the Linux superblock which will reside in memory. The following list

contains the �elds in the Linux �lesystem's superblock which are important to the project.

1. o�set 0(dev): Device superblock is located on

2. o�set 2(blocksize): Blocksize of blocks on device

3. o�set 6(lock): Lock bit set when superblock in use

4. o�set 7(rdonly): Read only bit set for read only �lesystem

5. o�set 8(dirt): Dirty bit set when superblock changed

6. o�set 9(superop): Pointer to structure containing valid operations for the mounted

�lesystem
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7. o�set 13(ags): Various ags set at mount time (non-fs dependent) such as read-only,

no-dev, no-suid, etc...

8. o�set 17(magic): Magic number for �lesystem

9. o�set 23(time): Time �lesystem was mounted

10. o�set 27(covered): Pointer to inode of �lesystem which was written over

11. o�set 31(mounted): Pointer to root directory inode

12. o�set 35(wait): Pointer to wait queue for superblock operations

13. o�set 39(u): Union containing structures for subsets of superblocks of any other mount-

able �lesystems

As can be seen from the superblock structure, it is essentially a container for other superblock

structures and inodes. Locking mechanisms and various �lesystem independant structures

are added, but pointers to the superblock operations and �lesystem dependant structures

are left to be �lled in at the time that the �lesystem is mounted.

The union for the System V/386 speci�c portion contains most of the original superblock

information. Unlike the inode (as seen later), it is necessary to retain a virtual copy of all

superblock information for later reference.

3.2.1 Reading the Superblock

The superblock to be used is passed as a pointer to the read super routine. First, a lock

is put on the superblock so that the cache can be manipulated freely. I have been lax on
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locking up inodes and superblocks throughout the rest of the code. If race conditions occur,

the modules should be examined to determine where to place further locks on the �les and

bu�ers.

1. The read super does a direct read to the disk, grabs the zero block and places it into

a bu�er for manipulation.

2. Set a pointer to the System V/386 superblock to the correct location in the bu�er

(since the superblock starts at o�set 512)

3. Check the magic number to make sure that the user did not err in calling the disk a

System V/386 disk.

4. Read the root inode from the disk and verify that it really does exist. The root inode

is then stored in mounted, in the superblock.

5. Copy the general System V/386 superblock info into the Linux superblock (time, uids,

etc...)

6. Copy the free caches over into the Linux version of the System V/386 superblock.

Upon return from the read super routine, the Linux superblock contains the following:

� All �elds speci�c to the Linux portion of the superblock were updated correctly. The

�elds include blocksize, magic number for the fs, and pointers to the �lesystem speci�c

operations (System V/386 function calls).

� The root inode for the system v �lesystem is loaded into the mounted �eld in the

superblock.
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� The System V/386 speci�c portion of the Linux superblock was �lled in with all nec-

essary information taken from the superblock which resides on disk.

One major problem I cannot solve or �nd a reason for is where the initial location of the

superblock is. All literature and code indicates that the superblock is always contained in

block 0, o�set 512 of a system v/386 �lesystem. In practice I �nd it there only when using

5 1/4" diskettes formatted at 1.2 Meg. I have updated the code to search for the superblock

before using it.
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struct inode *

s_mounted

struct super_

operations *

s_op

union{

various file types

+

struct sysv_sb_

info sysv_sb

} u

Reading the Linux Superblock

1. Mount command sends control to sysv_read_super via the filesystems.c code

2. sysv_read_super attempts to a) load block from disk  b) verify the magic number

4. Read the root inode and set the pointer to it in the superblock

specific implementation

3. Load the pointer to the valid System V/386 operations structure into the Linux superblock

5. Move miscellaneous information out of structure residing on disk, into the

    Linux superblock (the u structure (System V/386 specific copy))

6. Move the free cache’s (blocks and inodes) into the union in the Linux structure

7. Return a pointer to the new Linux superblock to the caller

static struct super_operations sysv_sops = {

  sysv_read_inode,

  NULL,

  sysv_put_inode,

  sysv_put_super,

  sysv_write_sb,

  sysv_statfs

};

inode
a Linux

structure

A subset of the System V/386 superblock

can be contained here.  I have chosen to

duplicate all fields since space permitted

and I did not want to lose ANY information.

see page 132 for structure

definition, pg 62 for System V/386

Figure 2: Reading the Superblock

3.2.2 Writing the Superblock

Unlike many varieties of Unix �lesystems, the System V/386 �lesystem needs to write the

superblock periodically to disk. This operations is achieved by the sysv write sb routine.

It is virtually the reverse of reading the superblock, though not as many veri�cations are

done. The important part of this operation is that the variable data gets placed back onto
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the disk, primarily the cache speci�c �elds of the superblock. The write sb routine follows

the following order.

1. Read the zero block of the superblock's device (pointed to by dev in the Linux su-

perblock) into a bu�er.

2. Find o�set 512

3. Copy the time into the bu�er

4. Update the cache �elds in the bu�er (free, inode, nfree, ninode)

5. Update the total free inodes and total free blocks �elds

6. Mark the bu�er as dirty

7. Release the bu�er (this should implicitly write the bu�er back onto the disk)

8. Change the superblock's dirty bit back to 0 to indicate it was written.

Primarily, the Linux implementation of the System V/386 �lesystem completes the above

operations when major cache �lls are done, and when a �lesystem is unmounted.

3.3 Inode Handling

Inode handling is very similiar to the superblock handling routines. This section will describe

how a System V/386 inode is read into memory, then a bit about where and how subsequent

changes are handled. The list below displays many of the �elds in a Linux inode. Most of the

�elds are not listed though. A large number of �elds only used for handling in memory. The
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bulk of the space allocated for a Linux inode contains �elds and pointers for caching inodes.

The list below does contain �elds relevant to the �lesystem. Again, like the superblock, the

inode acts as a container for �lesystem speci�c behavior, with the 'meta-inode' containing

information which will be common to all inodes.

1. (dev): Device inode is mounted on

2. (ino): Number of inode on device

3. (mode): Mode of inode loaded

4. (link): Number of links to the inode

5. (uid): User ID of inode

6. (gid): Group ID of inode

7. (rdev): Device if inode refers to another inode on another device

8. (atime): Time inode was last accessed

9. (mtime): Time inode was last modi�ed

10. (ctime): Time inode was created

11. (op): Pointer to valid operations for this particular inode

12. (lock): Bit set indicates inode locked

13. (mount): Bit set indicates inode mounted
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14. (u): Union containing various possible inode structures which are dependent on the

�lesystem type the inode is associated with.

The union for the System V/386 �lesystem contains the direct/indirect block mappings.

All other information is contained in the Linux speci�c portion of the inode. The System

V/386 direct/indirect block mappings is further altered when stored in the Linux inode. The

addresses are converted from their native 3 byte addresses to an easier to handle four byte

equivalent.

3.3.1 Reading an Inode

An inode is read in the sysv read inode routine. The routine receives a copy of the Linux

inode when it is called, the number of the inode to be read is stored in the ino �eld of the

inode structure. The following is done to grab the inode o� the disk and return successfully.

1. Store the inode number

2. Zero out pointers to inode functions in the op �eld

3. Set the mode to 0

4. Check if reading the root inode, if so, set the op �eld to the operations which can be

done on a root inode. Also set the mode to 777 and return to the caller.

5. Figure out the block that the inode is in if it's not the root inode

6. Read in the block, return if block can't be read

7. Move the inode structure into the correct portion of the bu�er returned by the read
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8. Set easy �elds in the Linux inode such as time, mode, uid, etc....

9. Check what type of inode we have retrieved and set the inode op �eld appropriately

(could have a directory, link, �fo, block char device, etc...)

10. Convert the block pointer addresses to 4 byte addresses and store in the Linux inode.

11. Return to the caller.
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Reading the Linux Inode

1. Determine if root inode (special root directory operations are loaded to i_op)

2. Determine what block inode resides in on disk

3. Read the block from disk and locate pointer to the correct location

4. Copy info from disk inode directly to Linux inode (not the u. structure)

    (info includes mode, uid, gid, nlink, etc...)

5. Copy addresses for d0-d9, i0, dbl0, t0 into the u. portion of the inode

    (convert addresses from 3 byte to 4 byte)

6. Load correct operations into i_op

System V/386 specific implementation.

union {

various fs

specific inodes

+

struct sysv_

inode_info}

u

struct inode_

operations *

i_op

structure contains an implementation of the System V/386 inode data block

addressing scheme converted from 3 byte to 4 byte addresses

see page 131 for Linux implementation of structure, pages 47, 49, 54, 111 for

Figure 3: Reading an Inode

3.3.2 Writing an Inode

The primary purpose of the write inode routine for System V/386 �lesystem is to update the

data block pointers if they have changed. The routine is simply a reverse of the read systemv

routine.
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3.4 Coding for Filesystem Speci�c Routines

3.4.1 High Level Procedures

Most of the high level routine (mkdir, rename, etc...) were copied from other �lesystems with

slight modi�cations to allow for System V/386 versions of structures. The most complex of

the high level routines to complete was the truncate functions. These are used to ensure

that �les are allocated to the data pointers within an inode correctly.

3.4.2 Low Level Disk i/o Coding

The low-level disk i/o is the only portion of the �lesystem which must be built from scratch.

It was best to maintain the same named functions for consistency with the rest of the

�lesystem, though much of the internals are changed. Direct manipulation of a System

V/386 superblock occurs in the lowlev.c module. This module is where new inodes are

allocated, new blocks are allocated, and inodes and blocks are freed. It is critical in the

allocate/deallocate routines to keep the superblock which exists out on disk up to date. The

algorithms follow directly from the description of the System V/386 �lesystem in the �rst

half of the paper.

While coding the lowlevel routines, the major thing to keep in mind is that the parameters

passed in are Linux structures. The code uses a combination of both the Linux and the

System V/386 structures to obtain the required results in low level disk i/o.
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3.5 Con�guration of Linux to Include/Exclude Filesystems

Changes to the Linux kernel are minimal to get a new �lesystem up and running. Changes

must be done to the following �les, corresponding changes are documented with the list.

� /linux/fs/�lesystems.c - The primary structure (�le systems) is contained in the fs.h

�le. This structure is used to send control upon a mount to the correct read super

routine. If a �lesystem is not listed here, it will not be able to be mounted.

� /linux/include/linux/fs.h - Changes must be made here to include pointers to system

v/386 data structures from the superblock and the inodes. These structures are main-

tained in memory and are accessed from most of the system v/386 �lesystem routines.

� /linux/fs/Make�le - This must be changed to include the fs/sysv directory so that the

code will be compiled.

� /linux/con�g.h - This is the script to con�gure the Linux system before compiling the

kernel. It should be adjusted to allow the inclusion/exclusion of the system v/386

�lesystem.

3.6 Conclusion (Linux System V/386 Implementation)

The superblock and inode in the Linux operating system are the key to the robust Linux

�lesystem. Abstraction of common data structures in �lesystems, and subsequent contain-

ment of �lesystem type dependent data structures allow for customization of Linux to use

similiar, but not duplicate, �lesystems.
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There are bene�ts and drawbacks to this design. The major bene�t of the design is easy

inclusion/exclusion of �lesystems in the kernel. A major drawback to the design is that each

modular �lesystem requeires unique code for all data access/handling routines, even if the

functions are exact duplicates of each other.

Coding new �lesystems for Linux is a relatively simple task. The largest part of coding is

�rst understaninding how the new �lesystem works. Once this is done, the Linux �lesystem

modi�cations are simple, primarily due to the abstraction Linux does. The native structures

in the new �lesystem are left intact so there is only a small learning curve to �t a �lesystem

into Linux.

It is also clear that this process is not for a simple user to appreciate. Adding and removing

�lesystems from a user's perspective would be extremely di�cult. The option would be

to include all of the �lesystems which, in turn, creates a larger runtime kernel. From this

perspective, Linux poses a problem if it were to ever enter a commercial market. From

the perspective of a programmer and/or student, Linux makes a great case study to use to

demonstrate �lesystem implementations.

4 Appendix A - The DOS �lesystem

1. Logical Sector 0 - Breakdown follows

� 00h - 8086 Jump Instruction

� 03h - OEM name & version

� 0Bh - Bytes per sector
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� 0Dh - Sectors per allocation unit

� 0Eh - Reserved sectors

� 10h - Number of FATs

� 11h - Number of root-directory entries

� 13h - Total sectors in logical volume

� 15h - Media descriptor byte

� 16h - Number of sectors per FAT

� 18h - Sectors per track

� 1Ah - Number of heads

� 1Ch - Number of hidden sectors

� 1Eh - Bootstrap routine

2. File Allocation Table (FAT) #1

3. Possible additional copies of FAT

4. Root disk directory

5. Files area (to the end of the disk)

The disk organization is built from the above structures, �le accesses revolve around the FAT.

Before the overview of the FAT, one must understand how MSDOS allocates space. Rather

than going by blocks and sectors, MSDOS uses an allocation unit, also called a cluster. How

many sectors per cluster on a disk is determined by the drive type. Sectors per cluster are

determined in terms of powers of 2.
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� Single Sided oppy 1 sector/cluster

� Double Sided oppy 2 sectors/cluster

� PC/AT type �xed disk 4 sectors/cluster

� PC/XT type �xed disk 8 sectors/cluster

Notice that serious fragmentations problems can occur on some types of �xed disks, in fact

up to (512*8-1) bytes can be lost per �le which is created. Contrast this with 1023 bytes

lost for a typical Unix �lesystem, assuming it was formatted with default values. The FAT

keeps track of clusters and is simply a set of 12 bit or 16 bit hex numbers. Twelve bits are

kept if there are under 4087 clusters, 16 bits are kept for over 4087 clusters. Each FAT table

appears as follows.

� Byte 1 - Media Descriptor Byte

� Bytes 2-4 - (0)0FFh

� Bytes 4-end of FAT

{ (0)000h indicates the cluster is available

{ (F)FF0h - (F)FF6h indicates the cluster is reserved

{ (F)FF7h indicates the cluster is bad

{ (F)FF8h - (F)FFFh indicates the last cluster in a �le

{ (x)xxxh indicates the next cluster in a series
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The appearance of the FAT is similiar to many avors of Unix, but whereas the bitmaps

which will be described in the Minix system simply decide if a block is free or not, the FAT

contains much information about how a �le is assembled, plus bad block criteria.

The FAT makes �le corruption checking very simple. Multiple copies of the FAT can be kept

up to date. Occasionally, the copies of the FAT can be checked against each other to verify

that a copy of the FAT has not been corrupted. Of course this is not in any way perfect as

many other problems can occur, but it does keep the central data structure relatively intact.

In addition to the FAT, each volume in MSDOS contains a root directory structure. This

is somewhat similiar to the idea behind the root inode, except that the root directory is

not handled in the same manner as other subdirectories. Subdirectories other than the

root appear as �les with special attribute bytes, similiar to inodes. Only the root directory

warrants special handling in DOS. This may be an o�shoot of Versions 1 and 2 of DOS

where only one directory was allowed, thus storage space was allotted at the beginning. All

directory structures, root or subdirectories, have the same datastructure controlling it. This

data structure does not allow for enough information to be kept for modern PC users, but

has su�ced for a long time.

� 00h - 07h: Filename

� 08h - 0Ah: Extension

� 0Bh : Attribute

{ 0 = Read-only

{ 1 = Hidden
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{ 2 = System

{ 3 = Volume label

{ 4 = Subdirectory

{ 5 = Archive bit

{ 6 = Reserved

{ 7 = Reserved

� 0Ch - 15h: Reserved

� 16h - 17h: Time created or last updated

� 18h - 10h: Date created or last updated

� 1Ah - 1Bh: Starting cluster

� 1Ch - 1Fh: File size

It is important to notice many of the problems that a directory entry such as this leaves out.

There is no place to record an owner, or di�erent security levels other than read only and

hidden. In fact, there is NO way to maintain any type of security for a multi-user system.

This is one of the major drawbacks of the MSDOS system. Any network �le security must

be implemented at a high level by application software.

In addition to security problems, the limited number of attributes limits what types of �les

are possible. It is not possible to symbolically link �les or do many types of operations

which Unix users take for granted. Also, even though subdirectories appear similiar to �les,
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there are only three primitive functions which can be performed on an MSDOS subdirectory,

CREATE, DELETE, and SELECT.

5 Appendix B - Minix

The minix operating system solves many problems which the System V/386 �lesystem has,

but produces problems and ine�ciencies of its own. The Linux operating system is loosely

based upon this, but will be described in better detail in the Linux section.

When looking at the layout of the Minix disk, there are 6 major parts that need to be

understood.

� 0h - 1023h: Boot block

� 1024h - 2047h: Super block

� 2048h - ?????: I-node bitmaps

� end of inode bitmaps - ????: Zone bit maps

� end of zone bitmaps - end of disk: Data blocks

The inode and zone bitmap areas are simply bits with a 1-1 correspodence to inodes or data

blocks. If the bit is a zero, the inode or block is not allocated, otherwise it is. This makes

searches for free zones fairly simplistic and only a small amount of data must be searched

to �nd free space. In the best case this is a linear search through the bits. The number of

blocks which are dedicated to inode and zone bitmaps is variable, since the number of inodes

which can be allocated is variable.
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The super block is much larger than the System V/386 super block, but contains slightly

more info, due to the need for pointers to where the bitmaps start and end. One can easily

determine an algorithm for allocating free blocks to a �le. The inodes reside in the �rst part

of the data blocks. A typical inode is very similiar to the System V/386 inode, with slightly

less information being kept as to update times.

A typical inode for Minix allows a 14 character �lename. It must be kept in mind that there

are extensions and variations of the Minix �lesystem which allow for longer �lenames, and

various other changes.
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