
Buffer Management for
XFS in Linux

William J. Earl
SGI

XFS Requirements for a
Buffer Cache

· Delayed allocation of disk space for cached writes
− supports high write performance

· Delayed allocation main memory reservation
− avoids memory deadlocks when later allocating pages

· Single buffer object for a large logical buffer
− supports very high data rates (7 GB/second for a single file)
− buffers of 1 MB or more needed in many cases

· Ability to pin storage for a buffer in memory
− supports write−ahead−log protocol for metadata updates

· Full integration of buffer cache with page cache
− all buffer data pages are entered in the page cache

· Integration with Direct I/O

· Parallel I/O initiation

Delayed Allocation Main
Memory Reservation

· Actual allocation may require buffer space

· Freeing buffer space may require allocation of space on disk for
delayed writes

· A reservation system must assure a minimum amount of buffer space
to avoid deadlock during allocation

· Delayed allocations are counting against a maximum amount of main
memory (typically 80% of available main memory), until actual
allocation of disk space is completed

· Page flushing should flush enough delayed allocation pages to keep
some memory available for reservation, even if there is free memory

· Reservation system allows threads to wait for space

Single Buffer Object for a
Large Logical Buffer

· XFS supports very high data rates
− 7 GB/second measured from a single file

· Large buffers used for high data rates
− a buffer commonly represents a disk extent

· Using a buffer_head per block for a large (4 MB or larger) buffer
requires a lot of space (and cache misses) and CPU overhead
− 7 GB/second with 4 KB blocks is 1.75 million buffer_head create, use and
destroy operations per second or about one every 570 ns

· Aggregate (multiple−block) buffer object just keeps physical page
number or mem_map_t pointers for much reduced space and time
overhead
− prototype interface in SGI Raw I/O patch

page_buf_t and components

Ability to Pin Memory for a
Buffer

· XFS uses a write−ahead log protocol for meta−data writes
− write log entry before updating meta−data
− on recovery just apply after images from the log (in case some of the
meta−data writes were not completed)

· “Pin a page” means “keep page flushing from writing out a page”
− such pages must count against the memory reservation (just as do delayed
allocation pages)

· XFS pins a metadata page before updating it, logs the updates, and
then unpins the page when the relevant log entries have been written
to disk

Partial Aggregate Buffers

· Pages within an extent may be deleted from memory so a buffer for an
extent may not find all pages present

· If the buffer is needed for writing, empty (invalid) pages may be used
to fill the holes

· If the buffer is needed for reading just part of the extent, missing
pages need not be read if all pages to be read are present

· When missing pages are required, cache module will read in the
missing pages

Efficient Assembly of Buffers

· Overhead for finding all valid pages within an extent must be low

· Pages for a given inode should be available cheaply in sorted order
− could change page cache to use an AVL tree off the inode to lookup pages
derived from the inode rather than the hash table

· Large pages are required
− fewer pages to manage

− page migration required for reliable reassembly of large pages

− pages which are not migratable must be clustered to avoid permanent
fragmentation of large pages

− buffers and other uses must not hold long−term locks on pages which
prevent migration

Metadata Buffers

· Place pages in cache associated with file system and log device
inodes
− regular file pages are associated with file inodes

· Common I/O path for metadata and regular data except that the
metadata disk map Is one−to−one with the logical offset

Direct I/O

· Small files which a frequently referenced are best kept in cache

· Huge files such as image and streaming media files and scientific
data files are best not cached since blocks will always be replaced
before being reused

· Direct I/O is raw I/O for files
− I/O directly to or from user buffers
− no data copying
− no invalidation of cached blocks

· Buffer cache must cooperate with direct I/O so that any pages which
are cached and are modified are read from memory and writes update
cached pages

Direct I/O VM Issues

· Direct I/O and Raw I/O avoid copying by addressing user pages
directly
− application promises not to change the buffer during a write

· Physical Pages are locked in place for the duration of the I/ O
− page reference count increased during the I/O
− user mapping of page may be release without causing errors

· SGI Raw I/O patch has an initial implementation (to be improved for
the XFS port)

· Direct I/O would help with Samba and Web serving performance if it
were supported by the network interfaces
− writes would block until packets were transmitted

· Compare to the IOLite model

Parallel I/O Initiation

· Buffer cache must not interfere with parallel initiation of multiple
independent I/O requests

· Locks should cover a minimum scope and be held briefly

· Page and buffer lookups must avoid excessive lock contention

Mapping XFS Buffering onto
Linux

· XFS buffer cache module on top of stand Linux page cache

· Linux 2.3 has moved to using the page cache for file data
− Linux 2.2 page cache can support the layered XFS buffer cache module

· Separate buffer_head object required for each block
− optional extension to drivers to support aggregate (multiple−block)
buffer object for both XFS and Raw I/O

· Limit complexity of layered buffer cache (compared to IRIX)
− buffer objects are temporary
− all persistent data stored in mem_map_t
− minimize long−term locks on buffers

· Avoid deadlock issues as when writing to a file from a buffer
mmapped onto the same file

