
A Class Hierarchy for Building Stream-Oriented

File Systems1

P. MADANY, R. CAMPBELL, V. RUSSO AND D. LEYENS

University of Illinois at Urbana-Champaign

Abstract

This paper describes the object-oriented design and implementation of a fam-

ily of stream-oriented �le systems under UNIX and under an object-oriented

operating system called Choices . A class hierarchy provides an object-oriented

taxonomy of the algorithms and data structures used in the design of this family.

The family includes the System V �le system, the 4.2 BSD �le system, and the

MS-DOS �le system.

The class hierarchy has been developed by a series of experiments that are de-

signed to lead to a framework for object-oriented �le systems. The class hierarchy

for stream-oriented �le systems is the product of the second experiment in this

series in which we revised a class hierarchy for UNIX-like �le systems[MLRC88]

to include the MS-DOS �le system. We describe the hierarchy, how it evolved

from the �rst experiment to the second, and review the lessons that we have

learned from the two experiments.

1 INTRODUCTION
The Choices operating system architecture [CJR87, CRJ87, RJC88] is motivated by the
di�culties of building portable and extensible operating systems for high-performance

multiprocessor and uniprocessor computers. The solution we adopt to the organiza-

tional problems inherent in such systems is to design Choices as an object-oriented
system. In addition, Choices provides application programs with an object-oriented
system interface.2 Associated with the operating system is an extensive class hierarchy

that de�nes the interfaces and components of the system [RJC88, RC89].

Choices presents an object-oriented environment to applications. Object method invo-

cation is used to invoke both the operating system services and the services provided

by \server objects" running as applications on the system. Choices provides secure
method invocation on server objects by using virtual memory protection mechanisms

1This work was supported in part by NSF grant CISE-1-5-30035 and by NASA grants NSG1471

and NAG 1-163.
2
Choices is implemented in the C++[Str86] programming language. C++ provides a su�ciently

e�cient implementation of classes and inheritance to support operating system construction.

1

to restrict access to these objects. Many facilities implemented by such server objects

would belong in a kernel of a more \traditional" operating system like UNIX. The �le

system is one such example of a traditional kernel service. In Choices, we have chosen

to implement the �le system as a collection of server objects; each object implements

an independent component of the �le system.

The �le system is a major operating system subsystem. Following the design goals of

Choices, we are building a spectrum of �le systems to enhance the customization of

the operating system family to applications. An application may use a customized �le

system that has components which are tailored to improve its performance, to optimize

its utilization of storage, or to provide compatibility with other �le systems. Stream-

oriented �le systems comprise a major category of �le systems and form the basis for
our initial work. In the future, we plan to examine record-oriented �le systems, data
bases and object-oriented �le systems.

One Choices research goal is to demonstrate code reuse in systems software through
object-oriented programming. Similar designs permit reuse of common algorithms and
data structures in the various components and versions of operating systems. Class
hierarchies and inheritance o�er an excellent mechanism to achieve reuse because they

help to organize related concepts and simplify code sharing. Although many existing
�le systems share design concepts, current software practices often lead to dissimilar
implementations. For example, the 4.2 BSD and System V versions of the UNIX �le
system have many common design features yet their implementation di�erences require
separate development and maintenance.

Another goal of Choices is to develop object-oriented �le systems that users may ex-
tend and customize for their particular applications. The work we describe here is a
milestone in this research. It is an object-oriented design and implementation study of

the integration of several existing stream-oriented �le systems into one class hierarchy

with a set of abstract access protocols that may be used on any of the speci�c �le
systems. The resulting software provides a platform for the testing and development

of applications while new �le systems for Choices are being developed.

In this paper, we describe the results of a second experiment in designing object-oriented
�le systems. In the �rst experiment, we built a class hierarchy to represent UNIX-like
�le systems[MLRC88]. In this second experiment, we revised the class hierarchy to

include the major components of stream-oriented �le systems. The hierarchy supports

the �le system implementation of System V UNIX [Tho78], 4.2 BSD UNIX [MJLF84]
and MS-DOS [Nor85] under Choices. We chose these three stream-oriented �le systems

based on their popularity and the range of data structures they use.

Our work has yielded signi�cant results. First, the stream-oriented �le systems are

organized into a taxonomy of data structures and algorithms. Second, the systems

2

are portable and extensible. Third, it is possible to combine �le system components

from the various implementations to produce hybrid systems. For example, the e�cient

BSD disk allocation methods and larger block sizes can be combined with the System

V directory structure to yield a system with higher throughput that is still compatible

with user level code that relied on the System V directory structure.

The paper is organized as follows: Section 2 provides necessary background for the

rest of the paper; Section 3 presents an overview of the layers of our solution; the next

�ve sections describe each layer along with the abstract classes that de�ne interfaces

between them and the concrete subclasses that provide speci�c behaviors; Section 8

compares our solution to previous work; Section 9 discusses possible future directions;

and Section 10 forms our conclusions.

2 BACKGROUND
Simplicity characterizes the design of the standard System V �le system[Tho78] that is

part of many commercially available UNIX operating systems. UNIX �les are sequences
of randomly accessible bytes accessed via a standard interface: read, write, and lseek.
This interface conceals hardware device dependencies and hides block allocation and
mapping. Because the operating system does not explicitly require record structures
for �les, the output of most UNIX tools can be the input of others. Nevertheless, any

tool can impose a structure on a �le. The random access feature allows even complex
record structures to be imposed on speci�c �les when needed.

Each �le system is stored on a physical disk partition. A �le system consists of a

header, a disk block allocation table, an array of inodes that describe individual �les,

and the data blocks of those �les. While �le systems cannot span disk partitions, a
single directory tree contains all the �les on all the �le systems. The directory tree
hides individual disks and partitions from the user.

An inode is a data structure that describes and speci�es the access rights to an indi-
vidual �le. Each inode contains the �le's size, reference count, ownership, access rights,

timestamps, and the set of disk blocks that hold the �le's data. Within a UNIX system,

each �le is uniquely identi�ed by a partition and inode array index number, called the
inumber. Directories are sequences of records containing name-inumber pairs. Because

directories contain inumbers instead of inodes, �les can be in more than one directory
at a time.

The System V �le system's performance is marked by two characteristics: high disk

space utilization and low CPU overhead per block transferred. However, there are some

de�ciencies in both performance and features that have been addressed by the design

of the 4.2 BSD �le system.

3

The 4.2 BSD �le system[MJLF84] and its subsequent 4.3 BSD revision are used in

many academic institutions. It maintains the same basic interface as System V, but

adds optimizations and extensions. The throughput of the System V �le system is

dominated by disk latency. To minimize this latency and thereby improve throughput,

the BSD developers increased �le block sizes and improved disk block allocation policies.

To maintain the high disk space utilization of System V, BSD added the capability to

fragment the last block in a �le. To achieve the performance improvements, the BSD

developers sacri�ced the internal simplicity of the System V �le system.

Two major features added by the BSD �le system are symbolic links and long �le

names. Symbolic links allow users to create directory entries that refer to the �les of

di�erent �le systems. In System V, �le names are restricted to 14 characters because
of the �xed-size record structure used for directory entries. The BSD �le system uses
a variable-size record that allows �le names up to 255 characters long.

The MS-DOS �le system[Nor85] is part of another popular commercially available per-
sonal computer operating system. MS-DOS �les are similar to UNIX �les and support
read, write, and lseek. The MS-DOS system also supports a UNIX-like tree-structured
directory hierarchy.

Though an MS-DOS �le system is super�cially similar to UNIX, its internal structure
is fundamentally di�erent. MS-DOS does not use a UNIX-like inode array. Instead,
directory entries contain most of the �le's control information. This implementation

technique restricts a �le so that it may appear in only one directory. MS-DOS directory
entries are �xed sizes. Thus, variable-sized �le block mapping information cannot be
kept with the other control information. Instead, all block mapping information for an
MS-DOS �le system is kept within a single data structure called a File Allocation Table
(FAT). The organization of the FAT yields poor random access performance for large

�les. MS-DOS �le sizes are recorded using (1) an end-of-�le character, (2) the size in a
�le descriptor in the directory entry, and (3) a count �eld of the length of a �le's FAT

chain. UNIX uses a single mechanism. Though neither so elegant as the System V �le
system nor so powerful as the BSD �le system, the MS-DOS �le system survives well

in the \hostile" environment of personal computers and oppy disks.

The following sections discuss the layers, components, and class hierarchy in our system

and are followed by a comparison with our previous work and directions for future

work.

3 FILE SYSTEM LAYERS
The Choices stream-oriented �le system is organized into four conceptual layers as
shown in Figure 1. Each layer provides an abstraction of the underlying physical storage

devices used for �le systems. The system is designed and programmed using object-

4

?

6

Hardware Devices

Application Programs

File Access Layer

Logical Storage Layer

Symbolic Name Layer

Physical Storage Layer

Figure 1: The Choices File System Layers.

oriented techniques. A class hierarchy represents the data structures and algorithms
used in the layers. Abstract classes introduce the data access protocols that are needed
between the layers, whereas concrete classes represent implementations of the protocols
at di�erent levels within the system and in di�erent versions of the system.

The layers and class hierarchy correspond to orthogonal design issues. The layers sim-
plify and organize the way in which �le system services are provided[BS87]. Object-
oriented design techniques[Sny81][Mey87] represent the layers, encapsulate design de-
cisions and data structures, and organize the inheritance of common data structures

and algorithms no matter in which layer they are used. Inheritance permits code reuse

between the layers and simpli�es maintenance. The �le system has the following four
layers:

� The Physical Storage Layer de�nes abstract protocols for accessing physical stor-

age devices like disks and introduces concrete implementations of these protocols

for speci�c devices. Access is de�ned in terms of the hardware device's physical

blocks. The physical storage layer supports the partitioning of a hardware de-

vice into several physical stores, Each store supports an independent and possibly
di�erent �le system.

� The Logical Storage Layer de�nes abstract protocols for accessing logical storage
residing on a physical store. Access is de�ned in terms of an extensible sequence

of blocks. Concrete implementations of these protocols support the particular

mapping of logical storage onto a physical store required by a given �le system.
Multiple logical stores correspond to �les and directories in the �le system and

5

Object

MemoryObject

MSDOSEntry

MultimaxDisk

UNIXInode
BSDInode

SystemVInode

MemoryObjectPartition
MemoryObjectView

ValidatingMemoryObject

ObjectContainer

MSDOSContainer

MultimaxContainer

UNIXContainer
BSDContainer

SystemVContainer

BlockAllocator

MSDOSFAT

BSDAllocator

SystemVAllocator

ObjectDictionary

MSDOSDirectory

BSDDirectory

HashedBSDDirectory

SystemVDirectory

ValidatingObjectDictionary

Figure 2: The Choices File System Class Hierarchy.

are mapped to a particular physical store. Physical storage is allocated and
deallocated to support the access operations de�ned for logical stores.

� The Symbolic Name Layer associates a symbolic name with a logical store. The

symbolic name is used to gain access to the contents of a logical store.

� The File Access Layer de�nes �le access protocols for applications. It uses the
symbolic name layer to provide applications with a uni�ed naming scheme for ref-
erencing �les in the �le system. It de�nes a �le by introducing a byte addressable

stream-oriented access protocol for a logical store.

Six classes form the basis for the four layers implementing the stream-oriented �le
system.

The FileSystemInterface and File classes de�ne a standard protocol that applications
use to access the �le system and individual �les. Figure 2 shows the class hierarchy

6

for The ObjectDictionary, ObjectContainer, BlockAllocator, and MemoryObject . These

are abstract classes de�ning protocols for accessing aggregates of named logical stores,

managing groups of logical and physical stores, managing allocation of storage blocks,

and accessing the stored data. Concrete subclasses specialize each of these four classes

to implement System V, BSD 4.2, and MS-DOS �le system behavior. Figure 3 shows

how instances of these classes are organized into layers.

Instances of the �le system classes represent access mechanisms to the contents of the

�le system. The instances are created dynamically when a request to access a �le is

made. Methods applied to the instances may create, delete or manipulate the contents

of a �le. The contents may be stored on secondary storage; in main memory; or, in a

distributed system, on a di�erent node of a network. The instances are removed when
access to the contents of their respective �les are no longer required. A �le persists in
storage even when there are no instances providing access to its contents.

In general, instances of all six classes are required in order to access a particular �le.
However, application programs interact directly only with a FileSystemInterface object
and one or more FileStream objects. In turn, these objects interact with with instances
of MemoryObjects, ObjectDictionaries, and ObjectContainers. MemoryObjects in the

logical storage layer interact with BlockAllocators.

The following sections describe the component classes of each layer and the interfaces
presented by instances of the component classes.

4 PHYSICAL STORAGE LAYER
The physical storage layer implements the �le system device I/O techniques, and I/O
scheduling and control[BS87]. Two classes of objects belong to this layer: MemoryOb-

jects and ObjectContainers. MemoryObjects implement the abstraction of a physical

store and provide an interface to and encapsulate the details of hardware devices such
as magnetic disks, optical disks, random access memory, and networks of remote stor-

age devices. Large storage devices are often partitioned3 into smaller physical stores
to provide more convenient �le system management. An ObjectContainer provides an

interface to and encapsulates the details of such hardware partitions.

4.1 MemoryObjects
The abstract classMemoryObject de�nes an access protocol for both physical and logical

storage. Physical or logical storage is modelled as a sequence of identically sized units.4

We will extend the use of MemoryObjects to logical storage in the next section.

3A partition is usually a contiguous section of a disk.
4To simplify implementations, the size of a unit is always an integer power of two.

7

The most important methods of class MemoryObject are read and write. These provide

access to multiple contiguous units of storage. Objects that communicate with Mem-

oryObjects via these methods must supply a unit number, the number of contiguous

units, and a bu�er address[RC89]. MemoryObjects also contain methods to report

their length and to report the size of their units.5

The Disk subclasses of MemoryObject provide an abstract software interface to disk

and controller hardware. Instances of the Disk subclasses use their corresponding disk's

sector size as their unit size. Currently the only disks supported are those using an En-

core Multimax disk controller. The MultimaxDisk class is a concrete Disk subclass that

contains the controller speci�c code. In \traditional" operating systems, the methods

of this class would be the disk driver routines.

To support storage device partitioning, the MemoryObjectPartition subclass provides
a window into a storage device represented by an instance, usually of a Disk subclass,
of MemoryObject. The o�set and size of this window can range from zero up to the
size of the underlying storage device. Since all currently implemented stream-oriented
�le systems support the clustering of disk sectors, a MemoryObjectPartition uses a
clustering factor to convert between a partition's unit size and the disk's sector size.

In general, several instances of a MemoryObjectPartition will be used to access a Disk.
However, their windows cannot overlap.

4.2 ObjectContainer
An instance of the abstract class ObjectContainer manages the contents of a physical
or logical store as a collection of stores. It facilitates access to these stores by creat-
ing and deleting instances of MemoryObject, ObjectContainer, and ObjectDictionary.

In turn, each of these instances provides access to a member of the collection using

that member's MemoryObject methods.6 Both the physical and logical storage layers
introduce subclasses of ObjectContainer.

The concrete class MultimaxContainer is a subclass of ObjectContainer in the physical
storage layer and manages a physical storage MemoryObject like a Disk. It divides the
physical store into partitions. Each partition is associated with a logical storage layer

subclass of ObjectContainer that can be instantiated to provide access to the contents

of the partition. In the current implementation, the logical storage may correspond to

a BSD, System V, or MS-DOS �le system. The MultimaxContainer methods create

and delete instances of MemoryObjectPartition and logical storage layer ObjectCon-
tainers on demand. These instances provide access to the contents of a partition using

the appropriate �le system physical disk organization. The MultimaxContainer object

maintains an indexed table of these instances. A partition table and logical storage

5MemoryObjects for logical storage also permit the length to be changed.
6In most cases, the member's MemoryObject will be in a lower layer than the instance.

8

type is stored in physical storage and the methods of MultimaxContainer check this

information against requests to access a partition or logical storage to ensure consis-

tency.

The open method of MultimaxContainer is is inherited from its superclass and has

arguments that include an index and a partition or logical storage type. First, it

creates an instance of MemoryObjectPartition that provides access to the partition

corresponding to the index. Then, if the argument speci�es a logical ObjectContainer

type, it creates an instance of the appropriate ObjectContainer subclass to manage the

partition and returns a reference to that instance. Otherwise, it returns a reference to

the MemoryObjectPartition. The reference is also stored in the indexed table. Further

calls to open with the same index and type cause the MultimaxContainer to invoke the
referencemethod of the instance associated with that index and to return a reference to
that instance. The reference method increments an internal reference count. Methods
of the instance of MemoryObjectPartition or logical storage layer ObjectContainer

are used to access the contents of the partition without further assistance from the
MultimaxContainer methods.

When access to an instance of a MemoryObjectPartition or logical storage layer Ob-

jectContainer is no longer required, the instance's unreference method is invoked. This
method decrements the internal reference count for the instance. If the count reaches
zero, the method invokes the close method of the MultimaxContainer that created it
before deleting itself.

5 THE LOGICAL STORAGE LAYER
The logical storage layer implements the physical organization methods of a �le system
[BS87]. It de�nes access to logical stores that are extensible sequences of blocks. Logical

stores may be created, deleted, read, and written. The logical storage layer maps access

to the contents of a logical store onto access to the contents of its physical store. It

allocates and deallocates the blocks of physical storage that are needed to support the

creation, deletion, and writing of logical stores.

Following the methodology of object-oriented design, the logical and physical storage

layers use the same abstract protocols for accessing the contents of storage; the pro-

tocols de�ned by the classes MemoryObject and ObjectContainer. The logical storage

layer de�nes UNIXInode and MSDOSEntry as subclasses of MemoryObject and U-

NIXContainer and MSDOSContainer as subclasses of ObjectContainer. The UNIX
classes are further subclassed for BSD and System V implementations. The layer de-

�nes the ValidatingMemoryObject as a subclass of MemoryObjectPartition to protect

the contents of a logical store from incorrect access. The layer also introduces class
BlockAllocator and its subclasses MSDOSFAT, BSDAllocator and SystemVAllocator

to manage the physical storage block allocation needed by extensible storage objects.

9

'

&

$

%

'

&

$

%

'

&

$

%

?

�-

�
�
�� �

�
��

?

�
�

�
�

�
��	

@
@
@
@
@
@
@
@@R

? ?

? ?

?

?

?

?

�
�
�
�
�
�
�� �

�
�

�
�

�
��

�
�
� @

@
@
�

�
�@

@
@..........................

@
@
@ �

�
�

.......
.......
.......
.....

File Access

Logical

Allocator

Block

Container

Object

Physical

Object

Memory

File System Interface

Object

Memory

Partition

Container

Disk

Object

File

Stream

Object

Memory

Validating

Symbolic

Dictionary

Object
Validating

Figure 3: The Choices File System Framework

10

5.1 MemoryObjects
The logical storage layer de�nes logical stores for UNIX and MS-DOS �les using the

UNIXInode and MSDOSEntry subclasses of MemoryObject. These logical stores allow

their length to be set both in units and bytes. Writing past the end of a logical

store automatically increases its length up to the limitations of physical storage. The

subclasses encapsulate �le system version dependent code.

The UNIXInode class is subclassed into BSDInode and SystemVInode to represent

the implementation di�erences between System V and 4.2 BSD �les. BSDInode and

SystemVInode inherit most of their code from UNIXInode. Both the read and write

methods are implemented by UNIXInode. Even though the BSDInode class rede�nes

write, it still calls UNIXInode's write method after performing some BSD-speci�c opti-
mizations. Both subclasses de�ne the mapping of inode structures onto physical storage
blocks used by the read and write methods. To achieve this mapping, both subclasses

set and retrieve direct and indirect block pointers.

The logical stores for MS-DOS �les are de�ned byMSDOSEntry, a subclass of Memory-
Object. Class MSDOSEntry inherits its interface from MemoryObject but encapsulates

several MSDOS-speci�c details.

Multiple instances of FileStream in the �le access layer may access a single logical store.
Each FileStream has its own set of access rights for that store and the stores must be

protected from incorrect access. ObjectContainers instantiate ValidatingMemoryOb-

jects to implement an access right protection mechanism. Each instance of Validating-
MemoryObject checks FileStream requests against the permitted forms of access and
delegates legal requests to the logical store.

For example, UNIX or MS-DOS �les may be opened for reading only. Protection is

provided by associating an instance of a ValidatingMemoryObject with the access to
the contents of an open logical store. The instance delegates read accesses to the
appropriate instance of an UNIXInode or MSDOSEntry.

5.2 ObjectContainers
The subclasses of ObjectContainer class in the logical storage layer manage collections

of logical stores and maintain a table of indices, types, and references. Type informa-

tion indicates the subclasses of ObjectContainer, MemoryObject, and ObjectDictionary

that manage the logical stores that are mapped into a partition.

The ObjectContainer methods open, create, and close are implemented in the super-

class and inherited by all subclasses. These methods are used to instantiate instances of

the appropriate subclasses of ObjectContainer, MemoryObject, and ObjectDictionary.

11

The superclass is abstract and does not contain information about the physical storage

mappings used by its subclasses or the subclasses of MemoryObject and ObjectDic-

tionary. Thus, in order to be able to manipulate information in physical storage, the

abstract class introduces the implementation speci�c protocols basicOpen, basicCreate,

basicClose, basicDictionary, basicContainer, and basicRootId. When the abstract Object-

Container methods open, create, and close need to manipulate information in physical

storage using a mapping that depends upon the subclass of the instance, they invoke

the appropriate method de�ned by the subclass using the implementation speci�c pro-

tocol. In this way, the ObjectContainer superclass methods can both be powerful and

inherited, enhancing the degree of reuse within the �le system.

For example, access to a BSD �le is achieved in several steps. At boot time, the kernel
creates a MultimaxContainer for each Disk. At mount time, MemoryObjectPartition
and BSDContainer objects are instantiated by the open method of the MultimaxCon-
tainer. Subsequently, a BSD inode instance is created by the open method of the

BSDContainer object. The BSDContainer object checks its index table to determine if
the instance of BSDInode, subclass of MemoryObject, has already been instantiated. If
not, it invokes its basicOpen method 7 to read the physical storage representing a BSD
inode and to instantiate an appropriate object. The open method stores a reference
to the BSDInode object in the index table and returns a reference to an instance of a

ValidatingMemoryObject that delegates legal access requests to the BSD inode.

As with BSD and System VMemoryObject subclasses, much of the code for the version-
speci�c container classes, BSDContainer and SystemVContainer, is shared via inheri-

tance from the common superclass UNIXContainer.

Many of the methods of BSDContainer and SystemVContainer perform identical func-
tions but use di�erent data structures. In these cases, code and design can be shared

as long as the di�erences can be hidden. For example, the readInode and writeInode

methods use a mapping from inumbers to physical blocks. The mapInumber de�nes

the protocol for this mapping in UNIXContainer. Each subclass then implements the
method in a di�erent way. This allows both the readInode and the writeInode methods

to be implemented in UNIXContainer and to be inherited by the subclasses.

The MS-DOS container class MSDOSContainer implements code for data structures
that have little in common with UNIX �le systems yet it is analogous to its sibling
class UNIXContainer. It does inherit the superclass ObjectContainer methods and this

reuse simpli�es maintenance.

7The virtual function feature of C++ assures that the open method will use the appropriate subclass

implementation of basicOpen.

12

5.3 BlockAllocators
MemoryObject methods in the logical storage layer use the allocate and free methods

de�ned by the abstract class BlockAllocator to manage the storage units of the physical

storage layer. Allocate returns the index of a unit of physical storage that has been

reserved for storing data and free releases a unit of storage that is no longer needed. The

SystemVAllocator subclass uses a free list to manage storage units, the BSDAllocator

subclass uses bitmaps, and the MSDOSFAT subclass uses a File Allocation Table.

6 SYMBOLIC NAME LAYER
The symbolic name layer supports the naming and aggregation of of the logical stor-

age introduced by the logical storage layer. It corresponds to the directory layer in
conventional �le systems [BS87]. All objects in this layer are instances of subclasses of
ObjectDictionary.

An ObjectDictionary is an aggregation facility for logical stores that maps a list of
symbolic keys to the indices used by ObjectContainers. Within any dictionary, the
keys must be unique, but several keys may map to the same index. ObjectDictionary
is subclassed in order to store the keys and indices on an underlying logical store
in a format that conforms to the directory structure of a particular �le system. An

instance of ObjectDictionary contains a reference to the instance of ObjectContainer
that created it.

The lookup method takes a key and a type as arguments and, if the key is found,

returns a reference to an instance of the appropriate class. It obtains this reference
by invoking the open method on its ObjectContainer using the index that corresponds
to the key. Two methods, create and add, allow objects to be added to dictionaries.
The create method performs the same function as lookup for existing keys. If the key

does not exist, however, the method returns the reference that it obtains by invoking

the create method on its ObjectContainer. The add method takes a symbolic key and

a reference to an instance of a ObjectContainer, ObjectDictionary, or MemoryObject

as arguments. It converts the reference to the corresponding object index, by invoking
the instance's idNumber method, and inserts the key and index into the dictionary.

Pairs of keys and object indices are deleted from a dictionary by the remove method.
To prevent �le loss and directory corruption, keys for ObjectDictionaries cannot be

deleted with the remove method. Instead, each dictionary has a destroy method that

will correctly dispose of an empty dictionary. The keys method returns a dictionary's
entire set of symbolic keys in a single call.

As with the MemoryObject subclasses used in the logical storage layer, ObjectDic-

tionary subclasses are divided into two categories, those that contain �le system version
speci�c code and those that provide protection.

13

The four subclasses BSDDirectory, HashedBSDDirectory, SystemVDirectory, and MS-

DOSDirectory encapsulate data structures belonging to directories of the three imple-

mented �le systems. BSD directories use blocks with several variable-length entries,

each containing pairs of �lenames and inumbers. These entries can belong to a sequen-

tial list or a hash table. System V directories use lists of �xed length entries, each

also containing �lenames and inumbers. MS-DOS directories use lists of �xed length

entries, each containing a �le name and �le control information.

Despite di�erences between the organization and contents of the directories, the lookup,

create, and addmethods for all four subclasses are inherited from ObjectDictionary. The

de�nition of two protected[Str86] methods �nd and insert facilitates this inheritance.

Since little code savings would result from sharing the other public methods remove,
destroy, and keys, these methods are implemented in each subclass.

The special purpose subclass ValidatingObjectDictionary is similar to the MemoryOb-
ject subclass ValidatingMemoryObject and provides an interface that checks access
rights before delegating requests to an instance of ObjectDictionary.

7 FILE ACCESS LAYER
In a Choices system, application programs interact with a FileSystemInterface object
and with FileStream objects to gain access to logical stores and their contents.

7.1 FileSystemInterface
An instance of class FileSystemInterface provides an application program with a uni�ed

name space. It parses a path name into a list of symbolic names. Each symbolic name
is interpreted, one after the other, by the instance of ObjectDictionary speci�ed by the

previous names in the path name. The FileSystemInterface has a mount method that
takes a partition index and path name as an argument. It creates a mount table entry

for the root dictionary of the logical ObjectContainer that corresponds to the partition
index. The mount table maintains references to all ObjectContainers that have been

instantiated as a result of the application's �le system requests. For pathname resolu-
tion, the FileSystemInterface uses the mount table to organize the root dictionary of

active ObjectContainers into a single tree. For convenience, it maintains a reference to

the root of this tree and to a \current" dictionary.

The public methods of the FileSystemInterface are similar to several UNIX system calls

including: open, creat, link, unlink, mkdir, chdir, and stat. These methods operate on
and return references to instances of FileStream or ObjectDictionary classes.

14

7.2 FileStreams
Although the logical storage layer provides access to extensible sequences of data blocks,

it does not provide the stream-oriented interface required by applications. The stream-

oriented �le systems we have implemented provide byte-addressability and the concept

of a \current �le position", i.e. the location within the �le where the next read or write

will occur. The �le access layer in Choices introduces the FileStream class to provide

these services.

Application programs can read and write sequentially or use random access. Each

operation may read or write multiple bytes. Because the FileStream class implements

the concept of a current �le location pointer, it has a seek method to allow programs

to position this pointer. The read and write methods also update this �le pointer.
Each instance of FileStream communicates with a corresponding logical store. Since
MemoryObjects only provide a read/write block interface, FileStreams also manage the

bu�ering of portions of the data of their associated logical store.

7.3 Memory Mapped Files
Direct access to data stored on secondary storage via FileStreams su�ers from access

latency and limited device throughput. The Choices virtual memory sub-system pro-
vides an alternate method of data access to applications by using physical memory to
cache the data of a logical store. This cacheing does not change the functionality of
a logical store, rather it allows data to be accessed directly by the instructions of the
computer.

The class MemoryObjectCache provides an abstract protocol for mapping portions of
a logical store (also called a logical memory[RC89]) into physical memory. Subclasses
of the MemoryObjectCache class implement speci�c dynamic cacheing techniques.

8 COMPARISON WITH PREVIOUS WORK
A comparison of the current design with an earlier one[MLRC88] provides an interesting

insight into the design and development evolution of an object-oriented system.

The major reasons for changing the design include:

1. incorporating a non-UNIX �le system, i.e. the MS-DOS �le system;

2. the desire to uncover and use more abstractions in the absence of a multiple

inheritance feature in C++; and

3. several months of heavy use of the original class hierarchy.

15

In our earlier work, we implemented dictionaries using the directory concept of the

UNIX �le system. A directory (dictionary) was thus implemented as a specially struc-

tured �le that maps �lenames to inumbers. Consequently, we classi�ed a directory as a

subclass of class File, which was a subclass of MemoryObject. When we added support

for MS-DOS directories, we found we needed a more abstract view of a directory (an

ObjectDictionary). Not only did this new abstraction accommodate the MS-DOS style

of directories, but it also allowed all concrete directory classes to share a single design.

Furthermore, the ObjectDictionary class allows half of the public method code to be

shared by all concrete subclasses.

After completing our original class hierarchy, we considered using multiple inheritance

to combine ObjectDictionary and MemoryObject attributes from separate class hier-
archies. By simply separating a directory into two components, the ObjectDictionary
and the underlying MemoryObject, we eliminated the need for multiple inheritance
without eliminating any possibilities for code sharing.

In our �rst attempt we also made the UNIXContainer class a subclass of Memory-
ObjectPartition, since each UNIXContainer controlled one partition of a disk. Before
we separated this functionality into an ObjectContainer, a BlockAllocator, and an

underlying MemoryObjectPartition, UNIXContainer objects were unnecessarily com-
plex. Our current design easily accommodates both UNIX and MS-DOS subclasses
of ObjectContainers and contains much common code. We also separated the block
allocation functions from the ObjectContainer class and created an new abstract class
BlockAllocator to encapsulate these functions.

Despite some of the major revisions we made to our original design, the �rst two �le
systems served our project well as an access mechanism for test programs and sample
data and as a backing store for the memory-management system.

The addition of the abstract classes ObjectContainer, BlockAllocator, and ObjectDic-
tionary changed the class hierarchy for the �le system considerably. However, most of

the original code was reused in the new design. This is a testimonial both to the qual-

ity of the original design and to the data encapsulation capabilities of object-oriented
programming. We expect that the incorporation of more diverse �le systems, to be

discussed in the next section, and continued use of our newly designed class hierarchies
will force continued evolution of our design.

9 FUTURE WORK
We plan to extend our library of stream-oriented �le systems with record-oriented
�le systems, customizable �le systems, and databases. The �le system design shows

that it is possible to build a class hierarchy with diverse components and designs.
Record-oriented �le systems and stream oriented �le systems have many incompatibil-

16

ities [Dem88], but also share many features. Our next design step is to incorporate

record-oriented �le system structures into the hierarchy.

10 CONCLUSIONS
The Choices project is examining the role of object-oriented design and programming

in the construction of system software. We have designed a new operating system and

reimplemented several �le systems successfully using these approaches. Throughout

the implementation we have been impressed with the ease with which object-oriented

design unites related concepts. This has had many major bene�ts, particularly in code

development, debugging, and maintenance. In this paper, we discuss the design of a
class hierarchy for three well-known, stream-oriented �le systems.

This paper is a contribution to both the taxonomy of algorithms and data structures
used in stream-oriented �le systems and the evolution of class hierarchical, object-
oriented �le systems. In particular, we show that:

� a careful choice of the methods de�ned and inherited in a class hierarchy increases
code and design sharing and reuse, even when implementing versions of a system
that di�er greatly.

� by restructuring our previously built hierarchy, not only were we able to incorpo-
rate a new �le system, MS-DOS, but we were also able to discover and use more
powerful abstractions.

� object-oriented code is reusable, even when major structural changes are made
to the organization of code,

� object-oriented design promotes customization, since the library of �le system

components that we built allow hybrid �le systems to be constructed that use
particular components from di�erent �le systems.

� object-oriented code is portable and retargetable since all three �le system im-
plementations that we built are independent of UNIX and MS-DOS and can,
potentially, be ported to many other operating systems besides Choices and U-

NIX.

To conclude, this paper describes a complete implementation of BSD, System V, and

MS-DOS �le systems as a portable package written in C++. Our next step is to add

record-oriented features to the hierarchy and to build customizable �le systems for
Choices based on our experience of building these stream-oriented �le systems.

17

REFERENCES
[BS87] Lubomir Bic and Alan C. Shaw. The Logical Design of Operating Systems.

Prentice Hall, 1987.

[CJR87] Roy Campbell, Gary Johnston, and Vincent Russo. Choices (Class Hier-

archical Open Interface for Custom Embedded Systems). ACM Operating

Systems Review, 21(3):9{17, July 1987.

[CRJ87] Roy Campbell, Vincent Russo, and Gary Johnston. The design of a multi-

processor operating system. In Proceedings of the USENIX C++ Workshop,

pages 109{123, 1987. Also Technical Report No. UIUCDCS{R{87{1388, De-

partment of Computer Science, University of Illinois at Urbana-Champaign.

[Dem88] Richard A. Demers. Distrbuted Files for SAA. IBM Systems Journal,
27(3):348{361, 1988.

[Mey87] Bertrand Meyer. Reusability: The case for object-oriented design. IEEE

Software, pages 50{64, March 1987.

[MJLF84] M. K. McKusick, W. N. Joy, S. J. Le�er, and R. S. Fabry. A Fast File
System for UNIX. ACM Transactions on Computer Systems, 2(3):181{197,
August 1984.

[MLRC88] Peter W. Madany, Douglas E. Leyens, Vincent F. Russo, and Roy H. Camp-
bell. A C++ Class Hierarchy for Building UNIX-Like File Systems. In
Proceedings of the USENIX C++ Conference, Denver, CO, October 1988.

[Nor85] Peter Norton. The Peter Norton Programmer�s Guide to the IBM PC. Mi-
crosoft Press, 1985.

[RC89] Vincent Russo and Roy H. Campbell. Virtual Memory and Backing Storage
Management in Multiprocessor Operating Systems using Class Hierarchical
Design. In Submitted to OOPSLA '89, 1989. Also available as University

of Illinois Technical Report.

[RJC88] Vince Russo, Gary Johnston, and Roy H. Campbell. Process Management

in Multiprocessor Operating Systems using Class Hierarchical Design. In

Proceedings of OOPSLA '88, San Diego, Ca., September 1988.

[Sny81] Lawrence Snyder. Using types and inheritance in object-oriented program-
ming. IEEE Transactions on Computers, March 1981.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Publishing Company, 1986.

[Tho78] K. Thompson. Unix implementation. Bell System Technical Journal,
57(6):1931{1946, July 1978.

18

