
Solaris OS group

Large Files in Solaris: A White Paper

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Part No.: 96115-001
April 1996

Please
Recycle

 1996 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font software in this product is protected by
copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Sun Microsystems Computer Corporation, the Sun Microsystems Computer
Corporation logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks
or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc.. All other product names mentioned herein are the trademarks of
their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Introduction . 7

2. Terminology and Concepts . 9

2.1 Small file . 9

2.2 Large file . 9

2.3 Large file safe . 9

2.4 Large file aware. 9

2.5 Large file summit (LFS) specification. 10

2.5.1 Extension to the current API 10

2.5.2 Transitional API. 10

2.6 Compilation environment . 10

2.6.1 Regular compilation environment 10

2.6.2 Transitional compilation environment 11

2.6.3 'Large file' compilation environment 11

2.7 open() protection . 11

3. Converting Applications . 13

iv Contents

3.1 Making an application large file safe 13

3.1.1 Compilation environment . 13

3.1.2 Source changes . 14

3.2 Making an application large file aware. 14

3.2.1 Compilation environment . 15

3.2.2 Source changes . 15

3.2.2.1 Correct interface parameter and return value type
definitions . 16

3.2.2.2 Variables not directly involved in interface calls 16

3.2.2.3 Output and in-memory formatting strings . . 17

3.2.2.4 Conversion routines . 17

3.3 Making a mixed mode application 18

3.3.1 Compilation environment . 18

3.3.2 Source changes . 18

3.3.2.1 Explicit use of 64-bit version functions and types
18

3.3.2.2 Existing 32-bit version functions and types . . 20

4. Converting Libraries . 21

4.1 Making a library function large file safe 21

4.2 Making a library function large file aware 22

4.3 Creating a transitional 64-bit interface 22

4.3.1 An example . 22

4.3.2 Header changes . 23

5. Implementation in Solaris. 25

5.1 Overview . 25

Contents v

5.1.1 Limitations . 25

5.2 Compilation environment . 26

5.3 Extension of interfaces . 27

5.3.1 Data types . 27

5.3.2 System interfaces. 28

5.4 New transitional interfaces . 29

5.4.1 Data types . 30

5.4.2 System interfaces. 31

5.5 Solaris utilities support . 32

5.5.1 Large file aware utilities . 32

5.5.2 Large file safe utilities . 32

5.6 Solaris library support . 33

vi Contents

1-7

Introduction 1

‘The Large File Summit’ is an industry initiative to produce a common
specification for support of files that are bigger than the current limit of 2GB on
existing 32-bit systems. It details the modifications to X/Open’s Single UNIX
Specification to support large files. SunSoft’s implementation is based on Draft
8, the latest specification, available at the time of writing this paper. We expect
Draft 8 will be submitted to X/Open for standardization.

The intent of this document is two fold:

• It is an aid to Solaris programmers who would like to convert their
applications to take advantage of 64-bit file offsets or to those who would
like to make sure that their applications work properly in a large file
environment. This information is also useful for developing new
applications on Solaris.

• It highlights the implementation of the Large File Summit’s API in Solaris so
that the users can understand the functionality offered.

This document does NOT describe an implementation of 64-bit Solaris.

It is assumed that readers have the basic knowledge of manipulating files and
their offsets in an application so the question of method is not addressed. This
document is meant to be used in conjunction with other supporting
documentation such as the Solaris reference manual and the Large File
Summit’s API specifications.

Chapter 2, ‘Terminology and Concepts’, introduces terminology and concepts
which will be used in the following chapters.

1-8 Introduction

1

Chapter 3, ‘Converting Applications’, suggests a number of ways an
application can be made aware or safe in a large file environment.

Chapter 4, ‘Converting Libraries’, suggests how to convert a library to function
in a large file environment and provide explicit 64-bit interfaces.

Chapter 5, ‘Implementation in Solaris’, highlights the SunSoft’s
implementation of the Large File Summit’s API, and includes a list of utilities
and libraries which are aware or safe.

2-9

Terminology and Concepts 2

2.1 Small file
A small file is a regular file whose size is less than 2GB i.e. <= (231 - 1) bytes.

2.2 Large file
A large file is a regular file whose size is greater than or equal to the former
limit of 2GB i.e. >= 231 bytes.

2.3 Large file safe
An application is called large file safe if it causes no data loss or corruption
when it encounters a large file. In other words, it need not properly process a
large file but it has the appropriate logic to handle errors detected by the file
manipulating functions.

2.4 Large file aware
An application is called large file aware when it has been converted so that it
can process large files with the same functionality it has when processing small
files. It must be able to handle large files as input and generate large files as
output. Note that this functionality is relevant to a class of files that the
application operates upon and does not necessarily pertain to all file access

2-10 Terminology and Concepts

2

within that program. For example, an application may be large file aware with
respect to its data files, but only large file safe with respect to its configuration
files, as they are not likely to grow to large file size.

2.5 Large file summit (LFS) specification
The LFS has produced the Large File Support Specification. Draft 7, published
on 12/15/95, is robust enough for the purposes of implementation. See the LFS
URL- http://www.sas.com/standard/large.file/ for more details on the LFS
proceedings.

2.5.1 Extension to the current API

The LFS has extended the behavior of the current interfaces to handle errors
correctly when an action cannot be performed or an attribute correctly
represented for a large file. For example open() will set errno to
EOVERFLOW when it encounters a regular file whose size is greater that or
equal to 2GB.

2.5.2 Transitional API

The LFS has defined a transitional API, 64-bit functions and types, whose
interfaces provide correct access to both large and small files. This specification
provides a new function named xxx64() for each function named xxx() that
passes or returns file offsets and a new type named xxx64_t for each type
named xxx_t that is related to file offsets. For example, the LFS specification
defines open64() and off64_t to deal with large files.

2.6 Compilation environment

2.6.1 Regular compilation environment

This is the existing compilation environment where all xxx() source interfaces
map to xxx() calls in the resulting binary. All the interfaces assume small files
or 32-bit offsets and return appropriate errors when presented with large files.
This environment is sufficient for making an application large file safe.

Terminology and Concepts 2-11

2

2.6.2 Transitional compilation environment

The transitional compilation environment exports all the explicit 64-bit
functions and types in addition to all the regular 32-bit functions and types.
For example, both xxx() and xxx64() functions are available to the program
source. An application must use xxx64() in order to manipulate large files. In
this environment, a program has a choice of using xxx() , xxx64() , or both
interfaces.

Setting _LARGEFILE64_SOURCE to 1 before including any system headers
enables 64-bit transitional interfaces.

2.6.3 'Large file' compilation environment

In this environment, all xxx() source interfaces will map to xxx64() calls in
the resulting binary. This facility also ensures that POSIX data types will be
defined to be the correct size (i.e. off_t will be typedef’d to be a long long 64-
bit entity). A program compiled in this environment will be able to use the
xxx() source interfaces to access large files rather than having to explicitly
utilize the transitional xxx64() interface calls. In this environment, a program
can only use xxx() which manipulates both small and large files.

Setting _FILE_OFFSET_BITS to 64 before including any system headers
enables 64-bit interfaces.

Not defining this macro or setting it as to 32 will result in the regular
compilation environment as discussed above.

2.7 open() protection
To prevent accidental data loss, the open() system call will fail on a large file in
the regular compilation environment. Before a file is opened, it’s size will be
verified to not be greater than the maximum offset representable by a 32 bit
value. A successful open() will set the new offset maximum field in the open
file descriptor to be the largest possible file size that can be successfully
manipulated in the targeted environment. Other calls, such as read() and
write() , respect the offset maximum value and refuse to venture beyond it.
This facility is an integral component to making a program large file safe.

2-12 Terminology and Concepts

2

3-13

 Converting Applications 3

Applications that manipulate files descriptors or offsets need to be examined
for correct behavior in the large file environment. When porting an application
to the large file environment, there are essentially three types of source code
modification which may take place. These map directly to one of three desired
operating modes:

• Large file safe
• Large file aware
• Mixed mode operability, where the program utilizes both small and large

file descriptions.

In an effort to make the issues most easily identifiable, the three modes are
considered individually below.

3.1 Making an application large file safe
Utilities, tools or libraries, which may encounter large files but should not
process them need to be made safe. For example, lp should fail gracefully when
given a large file to print.

3.1.1 Compilation environment

Ensuring that an application is large file safe does not require any special
feature test macros. The source should be compiled as usual. No modifications
to the makefiles are necessary.

3-14 Converting Applications

3

3.1.2 Source changes

The process of making an application large file safe involves examining the
source and ensuring that the existing interfaces behave appropriately (e.g. have
the correct error handling facilities) should they encounter a large file.

Traditionally, stat() and open() have returned errors when a file did not
exist or the specified path was mangled. The LFS specification requires
EOVERFLOW or EFBIG to be returned in errno when the called function
cannot correctly manipulate or represent some attribute of a large file, such as
size or offset information that exceeds the 32-bit limitation.

Usually, an application first encounters a large file during open()/fopen() or
lstat()/stat()/fstat() and fails at that point. But in the cases where a
program inherits a large file descriptor via fork() or exec() , it can fail during
functions like lseek()/fseek() or mmap() .

 The general philosophy for ensuring that a program is safe is to:
• look at all places where the program obtains file descriptors
• handle EOVERFLOW or EFBIG errors appropriately
• ensure that the program recovers or exits gracefully

For example:

lseek(fd, offset, 0);

or

if (lseek(fd, offset, 0) < 0) {
/* No error handling for large files */

}

may require changing to:

if (lseek(fd, offset, 0) < 0) {
if (errno == EOVERFLOW) {

/* Handling for large files */
}

3.2 Making an application large file aware
Utilities, tools or libraries that process large files need to be made large file
aware. For example, cp should be able to copy a large file.

Converting Applications 3-15

3

3.2.1 Compilation environment

The preferred method for achieving large file awareness at the source level is to
utilize the large file compilation environment option (see section 2.6.3).

Pass -D_FILE_OFFSET_BITS=64 to the compiler in your makefiles.

Setting _FILE_OFFSET_BITS to 64 will enable a new #pragma , which causes
the compiler to map the current xxx() source level interfaces to their
corresponding xxx64() binary entry points. This will also typedef types in all
relevant system headers to the correct size. As an example, consider off_t . It is
currently typedef'd in <sys/types.h> to be a long , but when
_FILE_OFFSET_BITS is set to 64, it will be typedef'd to be a long long .

Compilers which do not have the new #pragma feature will map xxx() to
xxx64() using #define . See section 5.2 for an example.

If _FILE_OFFSET_BITS is set to 32 or if it is undefined, the mapping will not
occur.

3.2.2 Source changes

Porting existing applications to the large file environment mostly involves
cleaning up code which contains undetected type clashes. Frequently a
fundamental type of similar size has been used instead of the variable’s
defined type. Also, much code has never been updated to reflect standards
such as POSIX.

Data types that have been extended to include the 64-bit version are listed
below:

ino_t file serial number
off_t relative file pointer offsets and file sizes
fpos_t represent uniquely every position within a file
rlim_t used for resource limit values
blkcnt_t number of disk blocks
fsblkcnt_t file system block counts
fsfilcnt_t file system inode counts

3-16 Converting Applications

3

3.2.2.1 Correct interface parameter and return value type definitions

The code should be examined for interfaces where return values and constants
were not declared to be one of these types. These declarations must be
manually edited and should be changed to the appropriate POSIX data type.

For example, an instance of lseek() to return the current value of the file
offset pointer for an fd, might have been coded as follows:

long curpos;
curpos = lseek(fd, 0L, SEEK_CUR);

In large file environment this would truncate the returned 64-bit offset to 32-
bit, which might lead to data corruption later on. The code should be changed
to:

off_t curpos;
curpos = lseek(fd, (off_t)0, SEEK_CUR);

3.2.2.2 Variables not directly involved in interface calls

Any variables used as counters or for temporary storage of sizes or offset
information must of the correct type to avoid truncation. There is no sure-fire
method of automating this process, so diligent perusal of the code is required.
Care must be taken to declare all the variables in an expression to be of the
same type. For example,

int delta;
long curpos;
....
curpos = lseek(fd, 0L, SEEK_CUR);
curpos =+ delta;

Not only curpos should be changed to off_t , but delta should also be changed
to off_t . Correctly modified code is shown below.

off_t delta;
off_t curpos;
....
curpos = lseek(fd, 0L, SEEK_CUR);
curpos =+ delta;

Use of the POSIX type definitions is preferable for declarations.

Converting Applications 3-17

3

3.2.2.3 Output and in-memory formatting strings

Any output or in-memory formatting strings utilized in reference to the large
file sizing entities must be converted. A formatting string for an offset may in
the current environment look like “%ld” . In the new environment, it must be
converted to “%lld” to accommodate value of type long long . Additionally, if
any byte count information accompanies the format, it must also be modified
to accommodate larger potential values.

For example:

off_t offset;
printf(" %7ld", offset);

should be modified to:

off_t offset;
printf(" %7lld", offset);

If the compilation environment may be set for either small files or large files, it
is safest to place #ifdef around the format string, such as:

off_t offset;
#if _FILE_OFFSET_BITS - 0 == 64

printf(" %7lld", offset);
#else

printf(" %7ld", offset);
#endif

3.2.2.4 Conversion routines

It may be the case that variables representing size or offset information are
being converted from string values and vice-versa. It is likely that the code
would use routines such as atol(), strtol() , to derive offset information.
Similar routines handle long long values, and these values should be used to
convert any size and/or offset information when programming for a large file
environment. Again, if the compilation environment is unknown, it is safest to
place #ifdef around the conversion routines as in the example below:

off_t offset;
#if _FILE_OFFSET_BITS - 0 == 64

offset = atoll(argv[1]);
#else

offset = atol(argv[1]);
#endif

3-18 Converting Applications

3

3.3 Making a mixed mode application
Some users may wish to use the 64-bit version of functions and types explicitly
so that an application may have both a small and a large files environment. An
application may use open64() to manipulate data files, but use open() to
handle a configuration file. In other words, this application can process the
large data files but will detect an error on encountering a large configuration
file.

3.3.1 Compilation environment

Use the transitional compilation environment as described in section 2.6.2.

Pass -D_LARGEFILE64_SOURCE=1 to the compiler in your makefiles.

If _LARGEFILE64_SOURCE is set to 1, 64-bit source level interfaces, of the
form xxx64() and types such as off64_t will be visible along with their
existing 32-bit counterparts.

3.3.2 Source changes

If mixed mode is chosen for an application, the source must be examined
carefully and decisions made as to which of the functions and types need to be
modified to handle large files. Essentially, this involves all the steps that are
required to make an application large file safe as well as aware.

3.3.2.1 Explicit use of 64-bit version functions and types

The rules as discussed in the section 3.2.2 are applicable here also, except that
64-bit version functions and types are used. Below is a list of those steps:

• Correct interface parameter and return value type definitions

For example, an instance of lseek() to return the current value of the file
offset pointer for an fd , will be modified from:

long curpos;
curpos = lseek(fd, 0L, SEEK_CUR);

to:

off64_t curpos;
curpos = lseek64(fd, (off64_t)0, SEEK_CUR);

Converting Applications 3-19

3

• Variables not directly involved in interface calls

Care must be taken to declare all the variables in an expression to the same
type. For example following code should be changed from:

int delta;
long curpos;
....
curpos = lseek(fd, 0L, SEEK_CUR);
curpos =+ delta;

to

off64_t delta;
off64_t curpos;
....
curpos = lseek64(fd, (off64_t)0, SEEK_CUR);
curpos =+ delta;

• Output and in-memory formatting strings

Any output or in-memory formatting strings utilized in reference to the
large file sizing entities must be converted. For example:

off_t offset;
printf(" %7ld", offset);

should be modified to:

off64_t offset;
printf(" %7lld", offset);

• Conversion routines

 It is likely that the code is currently using routines such as atol() ,
strtol() , to derive offset information. Similar routines handle long long

values, and those routines should be used to convert any size and/or offset
information when programming for large file environment. The following
code should be modified from:

off_t offset
offset = atol(argv[1]);

to:

off64_t offset;
offset = atoll(argv[1]);

3-20 Converting Applications

3

3.3.2.2 Existing 32-bit version functions and types

The remaining 32-bit versions of functions and types should be made large file
safe. This involves examining the source and ensuring that the existing
interfaces have correct error handling procedures should they encounter a
large file. Refer to section 3.1.2 for details.

The general philosophy for ensuring that a program is safe is to:
• look at all places where the program obtains file descriptors
• handle EOVERFLOW or EFBIG errors appropriately
• ensure that the program recovers or exits gracefully

4-21

Converting Libraries 4

Libraries that manipulate files descriptors or offsets need to be examined for
the correct behavior in the large file environment. When porting a library to the
large file environment, there are essentially three types of source code
modification which may take place:

• Making library functions large file safe
• Making library functions large file aware
• Creating a transitional 64-bit function to provide mixed mode operability,

where the program utilizes both small and large file descriptions.

In an effort to make the issues most easily identifiable, the three modes are
considered individually below.

4.1 Making a library function large file safe
Library functions which may encounter large files but are not intended to
process them need to be made large file safe. For example, fopen() should fail
gracefully when given a large file to open. If this is the case, the function code
should be compiled as usual but the function code must be examined for large
file error handling.

The steps involved to make a library function safe are the same as those
described in the previous chapter in section 3.1- “Making an application large
file safe”.

4-22 Converting Libraries

4

4.2 Making a library function large file aware
Library functions which may encounter large files and must process them need
to be made large file aware. For example, fopen64() should be able to
successfully return a FILE pointer when given a large file to open. If this is the
case, then the function needs to be compiled in the large file compilation
environment and the function code must be examined for correct return and
parameter types.

The steps involved to make a function aware are the same as those described in
the previous chapter in section 3.2- “Making an application large file aware”.

4.3 Creating a transitional 64-bit interface
Some library providers may wish to export the 64-bit version of functions and
types explicitly so that a library may continue to provide both small and large
file environments. A library may export fopen64() to manipulate large files, as
well as the standard fopen() to handle a regular file.

Any function that takes or returns a 64-bit type must be large file safe and have
a new transitional interface created. Transitional interfaces are created to allow
applications to continue to use pre-existing code while converting to the large
file environment.

4.3.1 An example

Lets take the example of fopen() in libc.so.1 in Solaris that needed to provide
the 64-bit transitional fopen64() interface. There are two steps in creating such
an interface.

1. Introduce a new function called fopen64() which can deal with large files
successfully, and modify existing fopen() to return EOVERFLOW on
encountering large files.

2. Modify the <stdio.h> header to include the new function prototype. The
header file changes are done in such a way that in:
• a regular compilation environment -

Source symbol fopen() maps to binary symbol fopen()

• a large file compilation environment -
Source symbol fopen() maps to binary symbol fopen64()

Converting Libraries 4-23

4

• a mixed mode compilation environment. -
Source symbol fopen() maps to binary symbol fopen()

Source symbol fopen64() maps to binary symbol fopen64()

4.3.2 Header changes

A new compiler directive #pragma redefine_extname is used to change one
symbol to another symbol during compilation. See section 5.2 “Compilation
Environment” for details on this feature.

..
#if _FILE_OFFSET_BITS - 0 == 64 /* large file environment */
#ifdef _PRAGMA_REDEFINE_EXTNAME
#pragma redefine_extname fopen fopen64
#else /* __PRAGMA_REDEFINE_EXTNAME */
#define fopen fopen64
#endif /* __PRAGMA_REDEFINE_EXTNAME */
#endif /* _FILE_OFFSET_BITS == 64 */
..
#if defined(__STDC__)
extern FILE *fopen(const char *, const char *);
#ifdef _LARGEFILE64_SOURCE /* explicit 64-bit interface */
extern FILE *fopen64(const char *, const char *);
#endif /* _LARGEFILE64_SOURCE */
#else /* __STDC__ */
extern FILE *fopen();
#ifdef _LARGEFILE64_SOURCE
extern FILE *fopen64();
#endif /* _LARGEFILE64_SOURCE */
#endif /* __STDC__ */
..

The following example of off_t in <sys/types.h> shows how to declare types
which are to be made available in large file compilation environment as well as
in mixed mode via explicit 64-bit type.

..
#if _FILE_OFFSET_BITS == 32
typedef long off_t; /* offsets within files */
#elif _FILE_OFFSET_BITS == 64
typedef longlong_t off_t; /* offsets within files */
#endif
#if defined(_LARGEFILE64_SOURCE)
typedef longlong_t off64_t;/* offsets within files */
#endif

4-24 Converting Libraries

4

5-25

Implementation in Solaris 5

5.1 Overview
 The main goals of this implementation are to:

• Provide large file support for all file systems that are capable of
supporting large file semantics.I.e. UFS, NFS, swapfs, tmpfs, and CacheFS.

• Conform to the final API specified by the Large Files Summit. The LFS is
going to submit its final specification to X/Open for standardization.

• Provide a compile time environment so that existing interfaces can be
used to access large files.

• Convert utilities and libraries that are listed below.

5.1.1 Limitations

This implementation does NOT provide support for:
• large files other than regular unix files.
• mapping of character devices, because mapping these devices using

mmap() will lead to ddi-dki interface breakage. However, we support
reading and writing to these devices at offsets > 2GB and up to maximum
value (1 terabyte).

• 64-bit block devices.

5-26 Implementation in Solaris

5

5.2 Compilation environment
A new compiler directive #pragma redefine_extname is used to change one
symbol to another symbol during compilation.This changes the symbol table to
use the new name wherever the original name is referenced. The effect is
similar to #define except that it is not a source level replacement of all the
occurrences of the string. For example, suppose myfunc() is an existing
interface which is a 32-bit interface and has been made large file safe. Another
interface, myfunc64() , is created to handle large files.

..
#if _FILE_OFFSET_BITS - 0 == 64 /* large file environment */
#ifdef __PRAGMA_REDEFINE_EXTNAME
#pragma redefine_extname myfunc myfunc64
#else /* __PRAGMA_REDEFINE_EXTNAME */
#define myfunc myfunc64
#endif /* __PRAGMA_REDEFINE_EXTNAME */
#endif /* _FILE_OFFSET_BITS == 64 */
..
extern off_t myfunc();
#ifdef _LARGEFILE64_SOURCE /* explicit 64-bit interface*/
extern off64_t myfunc64();
#endif /* _LARGEFILE64_SOURCE */
..

When an application uses the declarations above and a program is compiled,
there could be four possible scenarios:

Table 1: Compile environment

Compile environment Flags defined during compilation
Source
symbol

exported

Maps to
binary
symbol

Existing environment None myfunc myfunc

Large file environment _FILE_OFFSET_BITS = 64 myfunc myfunc64

Explicit 64-bit interface or Mixed
mode environment

_LARGEFILE64_SOURCE = 1 myfunc
myfunc64

myfunc
myfunc64

Why_would_you_do_this? mode_FILE_OFFSET_BITS = 64
_LARGEFILE64_SOURCE = 1

myfunc
myfunc64

myfunc64
myfunc64

Implementation in Solaris 5-27

5

The new #pragma feature has been provided in SunSoft’s latest compilers
(ProCompilers 4.2) for Sparc, x86 and PowerPC. These compilers predefine the
macro __PRAGMA_REDEFINE_EXTNAME to indicate that the new #pragma

feature is supported. For applications built using other compilers (including
older versions of Sun compilers) that do not support the new #pragma feature,
the source level mapping takes place via #define .

Note that using #define may break applications that #undef a function name
before passing the address of that function as a parameter to another function.
The #pragma redefine_extname avoids this problem.

5.3 Extension of interfaces

5.3.1 Data types

Some of the data structures have been modified to correctly handle large files.
The following is the list of structures and the changes.

Table 2: Large file sensitive data structures

Existing Definition Modified/New Definition Header File

typedef long blkcnt_t ;
typedef ulong_t fsblkcnt_t ;
typedef ulong_t fsfilcnt_t ;

<sys/types.h>

struct stat
 long st_blocks;

struct stat
blkcnt_t st_blocks;

<sys/stat.h>

struct statvfs
 u_long f_blocks;
 u_long f_bfree;
 u_long f_bavial;
 u_long f_files;
 u_long f_ffree;
 u_long f_favail;

struct statvfs
fsblkcnt_t f_blocks;
fsblkcnt_t f_bfree;
fsblkcnt_t f_bavial;
fsfilcnt_t f_files;
fsfilcnt_t f_ffree;
fsfilcnt_t f_favail;

<sys/statvfs.h>

RLIM_SAVED_MAX
RLIM_SAVED_CUR

<sys/resource.h>

_PC_FILESIZEBITS <sys/unistd.h>

5-28 Implementation in Solaris

5

5.3.2 System interfaces

Many of the existing 32-bit system interfaces have been modified to handle the
large files. These functions are listed below with their expected behavior.

Table 3: Large file sensitive interfaces

Existing Interface Error Remarks
execl(), execv(),
execle(), execlp(),
execvp()

the process’s resource limits are copied to its
saved resource limits

fclose(), fflush(),
fprintf(), fputc(),
fputs(), fputwc(),
fputws(), fseek(),
fwrite(), printf(),
putc(), putchar(),
puts(), putw(),
putwchar(), vfprintf(),
vprintf()

EFBIG functions fail if either the output stream or
the stream’s buffer needs to flushed and the
starting point is greater than or equal to the
offset maximum established during open

fcntl() EOVERFLOW one or more of the values won’t fit
fgetc(), fgets(),
fgetwc(), fgetws(),
fread(), fscanf(),
getc(), gets(), getw(),
getwc(), getwchar(),
scanf()

EOVERFLOW functions fail if data needs to be read and the
starting point is greater than or equal to the
offset maximum established during open

fgetpos() EOVERFLOW fpos_t can not hold the current file position
fopen(), freopen() EOVERFLOW off_t can not hold the size of the file
fpathconf(), pathconf() added support forFILESIZEBITS

fseek() EOVERFLOW The file offset can not be stored in along

fstat(), lstat(), stat() EOVERFLOW stat structure can not represent
file size (off_t st_size),
inode (ino_t st_ino) or
block count (blkcnt_t st_blocks)

fstatvfs(), statvfs() EOVERFLOW statvfs structure can not represent
total blocks (fsblkcnt_t f_blocks),
free blocks (fsblkcnt_t f_bfree),
available blocks (fsblkcnt_t f_bavail),
total inodes (fsfilcnt_t f_files),
free inodes (fsfilcnt f_ffree) or
available inodes (fsfilcnt_t f_favail)

Implementation in Solaris 5-29

5

5.4 New transitional interfaces
The interfaces, macros and data types in this section are explicit 64-bit
instances of the standard API. The function prototype and semantics of a
transitional interface are equivalent to those of the standard version of the call.

Setting _LARGEFILE64_SOURCE to 1 enables these interfaces.

ftell() EOVERFLOW the file offset can not be stored inlong

ftruncate() EFBIG if thelength is greater than the maximum
offset established at open

getrlimit(), setrlimit() use of saved resource limits described
lockf() EOVERFLOW a lock offset can not be stored inoff_t

lseek() EOVERFLOW The file offset can not be stored inoff_t

open(), creat() EOVERFLOW off_t can not hold the file size
mmap() EOVERFLOW if off + len exceeds the maximum offset

established at open
read(), readv(), pread() EOVERFLOW if trying to read a regular file beyond the

maximum offset established at open
readdir(), readdir_r() EOVERFLOW dirent structure can not represent either

inode number (ino_t d_ino) or
offset (off_t d_off)

write(), writev(),
pwrite()

EFBIG if trying to write a regular file beyond the
maximum offset established at open

Table 3: Large file sensitive interfaces

Existing Interface Error Remarks

5-30 Implementation in Solaris

5

5.4.1 Data types

The following table shows the standard data or struct types and their
corresponding 64-bit types. Please refer to headers for more details.

Table 4: 64-bit extended definitions

Standard Definition 64-bit Definition Header

struct dirent

ino_t d_ino ;
off_t d_off ;

struct dirent64

ino64_t d_ino ;
off64_t d_off ;

<sys/dirent.h>

struct flock

off_t l_start ;
off_t l_len ;

F_SETLK, F_SETLKW, F_GETLK,
F_FREESP

struct flock64

off64_t l_start ;
off64_t l_len ;

F_SETLK64, F_SETLKW64, F_GETLK64,
F_FREESP64, O_LARGEFILE

<sys/fcntl.h>

fpos_t fpos64_t <sys/stdio.h>
rlim_t
struct rlimit

rlim_t rlim_cur ;
rlim_t rlim_max ;

RLIM_INFINITY,RLIM_SAVED_MAX,
RLIM_SAVED_CUR

rlim64_t
struct rlimit64

rlim64_t rlim_cur ;
rlim64_t rlim_max ;

RLIM64_INFINITY ,RLIM64_SAVED_MAX,
RLIM64_SAVED_CUR

<sys/resource.h>

struct stat

ino_t st_ino ;
off_t st_size ;
blkcnt_t st_blocks ;

struct stat64

ino64_t st_ino ;
off64_t st_size ;
blkcnt64_t st_blocks ;

<sys/stat.h>

struct statvfs

fsblkcnt_t f_blocks ;
fsblkcnt_t f_bfree ;
fsblkcnt_t f_bavial ;
fsfilcnt_t f_files ;
fsfilcnt_t f_ffree ;
fsfilcnt_t f_favail ;

struct statvfs64

fsblkcnt64_t f_blocks ;
fsblkcnt64_t f_bfree ;
fsblkcnt64_t f_bavial ;
fsfilcnt64_t f_files ;
fsfilcnt64_t f_ffree ;
fsfilcnt64_t f_favail ;

<sys/statvfs.h>

off_t;
ino_t;
blkcnt_t;
fsblkcnt_t;
fsfilcnt_t;

off64_t;
ino64_t;
blkcnt64_t;
fsblkcnt64_t;
fsfilcnt64_t;

<sys/types.h>

_LFS64_LARGEFILE, _LFS64_STDIO <unistd.h>
_CS_LFS64_CFLAGS, _CS_LFS64_LDFLAGS
_CS_LFS64_LIBS, _CS_LFS64_LINTFLAGS

<sys/unistd.h>

Implementation in Solaris 5-31

5

5.4.2 System interfaces

The following table shows the standard API and the corresponding 64-bit
interfaces. The interface name and the affected data types are shown in bold
faces.

Table 5: 64-bit extended interfaces

Existing Interface 64-bit Definition Header File

struct dirent * readdir () struct dirent64 *readdir64() <dirent.h>
int creat ()
int open()

int creat64()
int open64()

<fcntl.h>

int ftw (.., const struct
stat *, ..)
int nftw (.., const struct
stat *,..)

int ftw64(.., const struct
stat64 *, ..)
int nftw64(.., const struct
stat64 *, ..)

<ftw.h>

int fgetpos ()
FILE * fopen()
FILE * freopen ()
int fseeko (.., off_t ,..) NEW
int fsetpos (.., const
fpos_t *)
off_t ftello () NEW
FILE * tmpfile ()

int fgetpos64 ()
FILE * fopen64 ()
FILE * freopen64 ()
int fseeko64 (.., off64_t , ..)
int fsetpos64 (.., const
fpos64_t *)
off64_t ftello64 ()
FILE * tmpfile64 ()

<stdio.h>

void mmap(.., off_t) void mmap64(.., off64_t) <sys/mman.h >
int getrlimit (.., struct
rlimit *)
int setrlimit (.., const
struct rlimit *)

int getrlimit64 (.., struct
rlimit64 *)
int setrlimit64 (.., const struct
rlimit64 *)

<sys/resource.h>

int fstat (.., struct stat *)
int lstat (.., struct stat *)
int stat (.., struct stat *)

int fstat64 (.., struct stat64 *)
int lstat64 (.., struct stat64 *)
int stat64 (.., struct stat64 *)

<sys/stat.h>

int statvfs (.., struct
statvfs *)
int fstatvfs (.., struct
statvfs *)

int statvfs64 (.., struct
statvfs64 *)
int fstatvfs64 (.., struct
statvfs64 *)

<sys/statvfs.h>

int lockf (.., off_t)
off_t lseek (.., off_t , ..)
int ftruncate (.., off_t)
int truncate (.., off_t)

int lockf64 (.., off64_t)
off64_t lseek64 (.., off64_t , ..)
int ftruncate64 (.., off64_t)
int truncate64 (.., off64_t)

<unistd.h>

5-32 Implementation in Solaris

5

5.5 Solaris utilities support

5.5.1 Large file aware utilities

5.5.2 Large file safe utilities

adb audioconvert audioplay audiorecord awk
bdiff cachefslog cachefsstat cachefswssize cat
cfsadmin cfsfstype cfstagchk chgrp chmod
chown cksum clri cmp compress
cp crash csh csplit cut
dcopy dd df du edquota
egrep ff fgrep file find
fsck fsdb fsirand fstyp ftp
getconf grep head in.ftpd install
join jsh ksh labelit ln
lockfs ls makedbm mkdir mkfifo
mkfile mkfs mknod more mount
mv mvdir nawk ncheck newfs
page paste pathchk pax pg
quot quota quotacheck quotaoff quotaon
rcp remsh repquota rksh rm
rmdir rsh sed sh split
sum swap swapadd tail tee
test touch tr truss tunefs
umount uncompress volcopy wc zcat
/usr/ucb/chown /usr/ucb/ln /usr/ucb/ls /usr/ucb/touch

accept admind cancel comm cpio
diff diff3 diff3prog diffh diffmk
dircmp disable ed enable from
lp lpadmin lpfilter lpforms lpmove
lpr lpsched lpshut lpstat lpsystem
lpusers mail mailcompat mailq mailstats
mailx pack pcat red rmail
sdiff sendmail tar unpack uudecode
uuencode vi view

Implementation in Solaris 5-33

5

5.6 Solaris library support

libTL libadm libaio libauth libbc
libbsm libc libcmd libcrypt libcurses
libdevinfo libelf libeti libgen libgenIO
libintl libkrb libkstat libkvm libmapmalloc
libnisdb libnsl libpkg libplot libposix4
libpthread librac libresolv librpcsvc libsocket
libthread libthread_db libtnf libtnfprobe libvolmgt
nametoaddr nsswitch scheme ucblib/libcurses ucblib/librpcsoc
ucblib/libucb ucblib/libtermcap

5-34 Implementation in Solaris

5

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
FAX 415 969-9131

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 413 2666
Belgium: 32-2-759 5925
Canada: 416 477-6745
Finland: 358-0-502 27 00
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 221-7021
Korea: 822-563-8700
Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-831-5568
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales: 415 688-9000

