An Overview of
The Global File System

David Teigland University of Minnesota
teigland@ece.umn.edu
Ken Preslan Sistina Software
kpreslan@sistina.com
Matthew O’Keefe University of Minnesota

okeefe@ece.umn.edu

http://www.globalfilesystem.org

Outline

Network Attached Storage, Fibre Channel, and Shared Disk
File Systems

The Global File System
-The Network Storage Pool
-The File System

e Structure
e [eatures

® Recovery (Journaling)

® Performance

Future Work

Network Attached Storage

The power of microcontrollers in disk drives
has steadily increased

They are now powerful enough to manage
network connections

Hence, Network Attached Storage

New approach to disks — Machines now
share disks. They don’t own them.

Storage Area Networks (SANS)

Fibre Channel

Fibre Channel is a combination of a local
area network and a storage bus.

A Gigabit interface
Can do both SCSI and IP at the same time

Point-to—Point, loop, and switched
configurations

A Fibre Channel Network

Switch

Shared Disk File Systems (SDFS)

e Each machine accesses the disks as if they
were local

e [aster access
e Greater availability
e Need a method of synchronization
e 3" Party Transfer (Asymmetric)
e Dlocks/GFS (Symmetric)

Asymmetric

Machines share disks containing
data, not metadata

Metadata is controlled by a central
server

The server provides synchronization
between clients

Machines make metadata requests
(create, unlink, bmap) to the server

Machines read actual data from the
disks

@® Similar to a traditional DFS

@® CXFS, DataDirect, MuntainGate,

Mercury

Symmetric

® Machines share disks
containing data and metadata

® Metadata is managed by each
machine as it is accessed

® Synchronization is achieved
using global locks (Dlocks or
a Distributed Lock Manager
(DLM))

® A local file system with
inter—machine locking

® GFS, VaxCluster, Frangipani

Comparison

e Asymmetric e Symmetric
i -Data, metadata, and
-Simpler to , adata,
implement locks are distributed
“Metadata Serverisa -\ Single Point of
i ; Failure
Single Point of
Failure -No single device
involved in all

-Metadata Server is a

transactions
bottleneck

-No dedicated
hardware

-Recovery is complex

The Global File System

Symmetric Shared Disk File System
Open Source (GNU GPL)

64-bit Files and File System

High Performance

Originally for Irix, now Linux and FreeBSD
Comprised of two parts

1The Network Storage Pool Driver
2The File System

The Pool Driver

® A Logical Volume Driver for Network Attached
Storage

-Combines multiple disks into one logical address space

-Combines multiple lock devices into one logical lock
space

o Handles disks that change IDs because of network
rearrangement

® A Poolis made up of SubPools of devices with
similar characteristics

A Network Storage Pool

GFS Client GFS Client GFS Client

Storage Area
Network

\

Sub-pool ¢ [Sub-pool 1 Sub-pool 2 Sub-pool 3 Sub-pool 4

Solid State| | Single Dis} RAID 5 Software Striped Disks RAID 3

Network Storage Pool

Volume Driver Layering

e Pool supports striping
e Other RAID levels by layering Pool on MD

e Linux—LVM also benefits from stacking
LVM above MD devices

e LVM, MD, and Pool can calvm_map
md_mapandpool_mapdirectly inll_rw_blk

e Or call map function through function pointer

Generic Mapping

e Add map_fnfunction pointer irblk_dev

e Eliminates driver specific code ih rw_blk
(much cleaner and less code)

e Clean way to make volume driver modular

e No limit on number or order in which logical
devices are stacked

e dev->map_fnis used likedev—->request_fn

e make_requess handled the same way with
makerq_frpointer

Generic Mapping

e New code segment ih rw_block() replacing
code betweetifdef CONFIG_BLK_DEV_X

tdev = dev;

while (tdev—>map_fn) {
if (tdev—=>map_fn (bh[i]->b_rdev, &bh[i]->b_rdev,
&bh(i]->b_rsector,
bh[i]->b_size >> 9)){
printk (KERN_ERR "Bad map in Il_rw_block\n");
goto sorry;

tdev = blk_dev + MAJOR(bh[i]->b_rdev);

The File System

e A high performance local file system with
inter-machine locking

e Optimized for Network Attached Storage

e \When the locks are removed, GFS makes a
good local file system

e Two types of locks

e SCSI Dlocks
e |P based Locks

Device Locks

Global locks that provide the synchronization necessary for a
symmetric SDFS

® Lock located on the network attached storage devices
® Accessed with the Dloc8CSI command

® Features

—Advisory

—Reader/Writer

—Version Numbers enable cache coherence
—Each lock has a list of the machines holding it

—All locks held by client expire if the client fails to heartbeat the drive

GFS Layout

® A SuperBlock with the location of the resource
groups

® Resource Groups

-Similar to EXT2’s Block Groups or XFS’s
Allocation Groups

-Bitmaps
-Blocks (inodes, indirect, data)
-Each resource group has a number of Dlocks

A GFS File System

Network Storage Pool (NSP)

1L Sub-|

Sub-pool 0 | [sub-poo 00l 2 Sub-pool 3

LN

J 5

. o

W fllewlel file\16/d|r3 ‘
%/// d"lvd"lz /f% File16.2

.
%/f% rootdir Zﬁiﬂ”p’%e Resource Resource

Resource Group 0 Directory Tree Group6 Group 7

RGO RG1

dir3

GFS Features

e Dynamic inodes

e Flat/64-bit metadata structure
e Platform independent metadata
e Extendible Hashing Directories

e Full use of the buffer cache
(full read and write caching)

e Interchangeable Locking Modules

Dynamic Inodes

No preallocated inode tables

Each inode is just a file
system block

There can be as many inodes
as there are file system blocks

Inode numbers are just disk
addresses

Inodes identified in the
allocation bitmaps

Inodes can bstuffedfor
space efficiency

Inode Number
Permissions

File Size
_———

Time Stamgs

1FS

Data Block Pointers| Block

or

Stuffed Data

Flat/64—-bit File Structure

All file sizes, offsets, and block addresses are 64 bit
File metadata trees are of uniform height

All direct pointers, or all indirect pointers, or all
double indirect pointers...

Tree height grows to accommodate the size of the
file

No practical file size limit
Simplifies the block mapping routines

Flat/64—-bit File Structure

Indirect Blocks

Data Blocks

Platform Independent Metadata

All on—disk structures are in a platform
independent format

Differences in structure packing are handled
Differences in endianess are handled

Very important for GFS because all clients
must understand and manipulate the metadata

Fast Directories

Small directories are stuffed in the inode

Larger directories use a technique called
Extendible Hashing

File names are hashed into keys that are
indices into a growable hash table

Faster than B-Trees
A bit more space hungry

Using the Buffer Cache

The buffer cache is critical to the performance of a
file system

Linux’s buffer cache is written with the assumption
that only one machine is modifying the data on the
disks

GFS uses routines to keep track of the buffers in the
buffer cache and invalidate them when necessary

GFS can do both read and write caching

Interchangeable Locking Modules

Want GFS to be independent of the type of
inter—-machine locking available

Created a locking interface to allow modules to plug
into GFS

Each module translates between the locking that GFS
expects and the locking available

The interface allows both very minimal locking
protocols and very complex protocols

Fairly well documented in GFS2/src/fs/gfs_locking.h

Organizational Structure

BTN

| VFS |
$
‘ Locking Interface GFS
P Lock\ DIOCk
Pool ‘

Registration

e Locking modules register themselves with
GFS using the functioregister_lock_prot@

e The module registers a structure containing a
structure of operations that the module
implements

e Operations: mount, unmount, lock, unlock,
release and reset

Operations

® Mount- Called once at mount time to set up the
lock space

Table Name - a name identifying the lock space
to be used. (e.g. The Pool name)

Call Back - Allows the locking module to ask
GFS to unlock a lock

® Unmount— Called at unmount time to close the
lock space

Operations

® | ock- Acquire a Global Lock (Glock)
Lock Number
Action - Acquire, Try, or Test
Flags — Shared, Commute, and Commute_Mod

Returns — Held, Shared, Cacheable, Expired, Need_S,
and Need_E

® Unlock- Unlock a Glock

Lock Number
Flags — Modified

Currently Implemented Protocols

e Nolock — Dummy locks for local file systems

Dlock—0.6 — Old lock specification
(Exclusive locks, Synchronous)

Dlock-0.9.4 — The 0.9.4 specification
(Reader/Writer, Asynchronous)

Dlip—0.9.5 — The 0.9.5 specification over
TCP/IP (drives do not need to support Dlock)

Future: DLM ?

Recovery

e A FSCK is the classic means of recovery
after a crash

-Slow (time proportional to FS size)
-The file system must be offline
-Not acceptable for shared disk file systems
-Now functional for GFS, will be improved

e Journaling solves these problems
-Recovery time proportional to FS activity
-Online recovery is possible

Layout for Journaling

Having multiple clients share a journal is too
complex and inefficient

Each client gets its own journal space

Each journal space is protected by one lock that is
acquired at mount time and released at unmount (or
crash) time.

Each journal can be on its own disk for greater
parallelism

Each journal must be visible to all clients (for
recovery)

GFS Layout

Glock QI Super Bloc
Glock iy Journal 0
Glock 21 Journal 1

Glock 31 Journal 2 >_'
Glock

Journal 3

Glocks 5-100

Glocks 1001-200

Journal Entries

Composed of the metadata blocks changed
during that operation (and a header)

Each entry has one or more Glocks associated
with it
-Standard GFS locks that protect each piece of
metadata

-For instance, a creat() entry would have locks
for the directory, the new dinode, and the
bitmaps.

A Journal Entry (in memory)

‘ Journal Entry ‘

,/'/%\.

Directory Bitmaps| |New inode

Lock 10 Lock 5 Lock 7
! ! |
iz @ Buffer 2 Buffer 3
¥
Buffer 1

Journaling

e Asynchronous
e Similar method to XFS
e Multiple journal entries are cached in—core

e Entries are committed to disk in groups
asynchronously

e Metadata buffers for a journal entry are pinned in
memory (can’'t be synced) until the entry is
committed.

e When journal write is complete, dirty metadata
buffers can be synced

Journaling in GFS

e All journal entries are linked to one or more
Glocks

e Before Glock is released for other machine:
1. Flush journal entries for Glock to log
2. Sync in—place metadata buffers
3. Sync in—place data buffers

e Only transactions dependent on the requested
Glock need to be flushed (or indirectly
dependent)

Journaling in GFS

3 | Glock # ® Glock 6 is requested
ournal

Enry 2 3 6 8 by another machine
1 X | X e flush entries 1,2,4 to
2 X | X |X log in order
3 X X e in—-place metadata
4 X | X and data buffers are

synced for Glock 6
X represents in—-memory .
metadata buffers which will * Glock 6 is released

be written to the journal

Journaling in GFS

e |nitial version will by synchronous to allow
work on recovery
e This is quicker and orthogonal to recovery code

e Performance will be improved after recovery is in
place by moving to async method

e The journal entry and in—place metadata are
synced before locks are released for each
operation

Recovery — Initiation

e Journaled recovery is initiated by:

e mount time check if any journals were shutdown
uncleanly

e |ocking module reports an expired client when it polls
or detects expired machines

e client tries to acquire Glock and locking module
reports it's expired

® |In each case, recovery kernel thread is called
with expired client’s ID

e Machine attempts to begin recovery by trying
to acquire journal lock of failed client

Recovery — Failed Clients

e A client which fails to heartbeat its locks but
is still alive could do IO while other
machines are trying to recover for it.

e Causes filesystem corruption
e Two solutions:
e Forcably disable failed client (shoot it in head)
e Fence out all IO from the failed client using Fibre
Channel switch
e This is the first step of recovery after
acquiring the journal lock of failed client

Recovery of Journal

e Find head and tail of journal entries
e [gnore partially committed entries
e For each entry

e try to acquire all locks associated with that entry

e determine whether to replay it and do so if
needed

e Mark all expired locksot expiredfor failed
client

e Mark the journal as recovered

Replaying Entries

e Decision to replay entry is based on
generation number in primary pieces of
metadata

e dinode
e bitmap headers

e When these are written to log, generation
number is incremented

e Replay journal entry if generation numbers in
entry are larger than in—place data

Recovery

e Machines can continue to work during
recovery unless they need a lock which was
held by a failed client

e Advantage over FSCK

Performance

e Test configuration

e 4 Alphas with Linux kernel 2.2.11
21164, 533 Mhz, 128 MB memory
Qlogic 2100 FC adapters
e 4 four—-disk JBODS (16 drives)
Seagate ST39175FC "Barracuda" 9 GB disks
Dlock version 0.9.4

Each JBOD is a separate striped subpool within one
GFS filesystem

e Brocade Silkworm Il FC switch

Scalability

e One to four machines are added to a GFS

filesystem of constant size

e Workload: 1 million random operations

consisting of 50% reads, 25%
appends/creates, 25% unlinks

e Each machine performs its workload in

separate directory and subpool

line 1

35 |

25+

dnpaads

15

35

25
Machines

15

Creates per Second

e Comparison of Extendible Hashing directory
structure to Linear directory structure

e GFS and Ext2FS both create a million entry
directory

e Measured creates per second at constant
intervals as directory was filled

e GFS speed levels off due to uncached hash
table and leaf blocks

seuu3 Alowaig

puodes 1ad pareain sauiug Aloyaia

Single Machine Bandwidth

e One Alpha writing to GFS filesystem
composed of eight striped disks

e Variable transfer size and request size
e transfer sizes: 64 KBto 1 GB
® request sizes: 64 KB to 4 MB
e Writing and reading
e writing peaked at 50 MB/sec
e reading peaked at 40 MB/sec

Future Work

Journaling and recovery

Growable File Systems

Some sort of block devices over IP
Scalability: 4, 8, 16, 32, ... 264

Application level testing: NFS and web
serving clusters

Ports to other OSs (FreeBSD, Solaris, back to
IRIX)

