
An Overview of
The Global File System

David Teigland University of Minnesota

teigland@ece.umn.edu

Ken Preslan Sistina Software

kpreslan@sistina.com

Matthew O’Keefe University of Minnesota

okeefe@ece.umn.edu

http://www.globalfilesystem.org

Outline

" Network Attached Storage, Fibre Channel, and Shared Disk
File Systems

" The Global File System

−The Network Storage Pool

−The File System

" Structure

" Features

" Recovery (Journaling)

" Performance

" Future Work

Network Attached Storage

" The power of microcontrollers in disk drives
has steadily increased

" They are now powerful enough to manage
network connections

" Hence, Network Attached Storage

" New approach to disks − Machines now
share disks. They don’t own them.

" Storage Area Networks (SANs)

Fibre Channel

" Fibre Channel is a combination of a local
area network and a storage bus.

" A Gigabit interface

" Can do both SCSI and IP at the same time

" Point−to−Point, loop, and switched
configurations

A Fibre Channel Network

RAIDCPU

CPU

CPU

CPU

Fibre

Channel

Switch Loop
CPU

Shared Disk File Systems (SDFS)

" Each machine accesses the disks as if they
were local

" Faster access

" Greater availability

" Need a method of synchronization

" 3rd Party Transfer (Asymmetric)

" Dlocks/GFS (Symmetric)

Asymmetric

" Machines share disks containing
data, not metadata

" Metadata is controlled by a central
server

" The server provides synchronization
between clients

" Machines make metadata requests
(create, unlink, bmap) to the server

" Machines read actual data from the
disks

" Similar to a traditional DFS

" CXFS, DataDirect, MountainGate,
Mercury

CPU

CPU

CPU

CPU

Metadata
Server

S
A
N

Symmetric

" Machines share disks
containing data and metadata

" Metadata is managed by each
machine as it is accessed

" Synchronization is achieved
using global locks (Dlocks or
a Distributed Lock Manager
(DLM))

" A local file system with
inter−machine locking

" GFS, VaxCluster, Frangipani

CPU

CPU

CPU

CPU

S
A
N

Comparison

" Asymmetric

−Simpler to
implement

−Metadata Server is a
Single Point of
Failure

−Metadata Server is a
bottleneck

" Symmetric
−Data, metadata, and
locks are distributed

−No Single Point of
Failure

−No single device
involved in all
transactions

−No dedicated
hardware

−Recovery is complex

The Global File System

" Symmetric Shared Disk File System

" Open Source (GNU GPL)

" 64−bit Files and File System

" High Performance

" Originally for Irix, now Linux and FreeBSD

" Comprised of two parts

1The Network Storage Pool Driver

2The File System

The Pool Driver

" A Logical Volume Driver for Network Attached
Storage

−Combines multiple disks into one logical address space

−Combines multiple lock devices into one logical lock
space

" Handles disks that change IDs because of network
rearrangement

" A Pool is made up of SubPools of devices with
similar characteristics

A Network Storage Pool

Sub−pool 0

Solid State

Sub−pool 1

Single Disk

Sub−pool 2

RAID 5

Sub−pool 3

Software Striped Disks

Sub−pool 4

RAID 3

Network Storage Pool

GFS Client

Storage Area

Network

GFS Client
GFS Client

Volume Driver Layering

" Pool supports striping

" Other RAID levels by layering Pool on MD

" Linux−LVM also benefits from stacking
LVM above MD devices

" LVM, MD, and Pool can call lvm_map,
md_map and pool_map directly in ll_rw_blk

" Or call map function through function pointer

Generic Mapping

" Add map_fn function pointer in blk_dev

" Eliminates driver specific code in ll_rw_blk
 (much cleaner and less code)

" Clean way to make volume driver modular

" No limit on number or order in which logical
devices are stacked

" dev−>map_fn is used like dev−>request_fn

" make_request is handled the same way with
makerq_fn pointer

Generic Mapping

" New code segment in ll_rw_block() replacing
code between #ifdef CONFIG_BLK_DEV_X

tdev = dev;

while (tdev−>map_fn) {
 if (tdev−>map_fn (bh[i]−>b_rdev, &bh[i]−>b_rdev,
 &bh[i]−>b_rsector,
 bh[i]−>b_size >> 9)) {
 printk (KERN_ERR "Bad map in ll_rw_block\n");
 goto sorry;
 }
 tdev = blk_dev + MAJOR(bh[i]−>b_rdev);
}

The File System

" A high performance local file system with
inter−machine locking

" Optimized for Network Attached Storage

" When the locks are removed, GFS makes a
good local file system

" Two types of locks

" SCSI Dlocks

" IP based Locks

Device Locks

" Global locks that provide the synchronization necessary for a
symmetric SDFS

" Lock located on the network attached storage devices

" Accessed with the Dlock SCSI command

" Features

−Advisory

−Reader/Writer

−Version Numbers enable cache coherence

−Each lock has a list of the machines holding it

−All locks held by client expire if the client fails to heartbeat the drive

GFS Layout

" A SuperBlock with the location of the resource
groups

" Resource Groups

−Similar to EXT2’s Block Groups or XFS’s
Allocation Groups

−Bitmaps

−Blocks (inodes, indirect, data)

−Each resource group has a number of Dlocks

A GFS File System

Sub−pool 0

RG 0 RG 1

Sub−pool 1

RG 2

Sub−pool 2

RG 3 RG 4 RG 5

Sub−pool 3

RG 6 RG 7

Network Storage Pool (NSP)

Resource Group 0

rootdir

Sub−pool 4

RG 8

D
i

dir1

rootdir

dir1

file1file18

dir12

file16 dir3

Directory Tree

file18

file1

Resource
 Group 5

File16.1

dir12 File16.2

dir3

Resource
 Group 7

Resource
 Group 6

GFS Features

" Dynamic inodes

" Flat/64−bit metadata structure

" Platform independent metadata

" Extendible Hashing Directories

" Full use of the buffer cache
(full read and write caching)

" Interchangeable Locking Modules

Dynamic Inodes

" No preallocated inode tables

" Each inode is just a file
system block

" There can be as many inodes
as there are file system blocks

" Inode numbers are just disk
addresses

" Inodes identified in the
allocation bitmaps

" Inodes can be stuffed for
space efficiency

Inode Number

File Size

Permissions

Time Stamps

Inode

1 FS
Block Data Block Pointers

 or

 Stuffed Data

Flat/64−bit File Structure

" All file sizes, offsets, and block addresses are 64 bit

" File metadata trees are of uniform height

" All direct pointers, or all indirect pointers, or all
double indirect pointers...

" Tree height grows to accommodate the size of the
file

" No practical file size limit

" Simplifies the block mapping routines

Flat/64−bit File Structure

InodeInodeInode
(Height 1) (Height 2) (Height 3) Indirect Blocks

Data Blocks

Platform Independent Metadata

" All on−disk structures are in a platform
independent format

" Differences in structure packing are handled

" Differences in endianess are handled

" Very important for GFS because all clients
must understand and manipulate the metadata

Fast Directories

" Small directories are stuffed in the inode

" Larger directories use a technique called
Extendible Hashing

" File names are hashed into keys that are
indices into a growable hash table

" Faster than B−Trees

" A bit more space hungry

Using the Buffer Cache

" The buffer cache is critical to the performance of a
file system

" Linux’s buffer cache is written with the assumption
that only one machine is modifying the data on the
disks

" GFS uses routines to keep track of the buffers in the
buffer cache and invalidate them when necessary

" GFS can do both read and write caching

Interchangeable Locking Modules

" Want GFS to be independent of the type of
inter−machine locking available

" Created a locking interface to allow modules to plug
into GFS

" Each module translates between the locking that GFS
expects and the locking available

" The interface allows both very minimal locking
protocols and very complex protocols

" Fairly well documented in GFS2/src/fs/gfs_locking.h

Organizational Structure

VFS

User Space

Pool

DlockIP Lock

GFS
Locking Interface

Callbacks
 to other
 clients

 To
 Lock
Server

Registration

" Locking modules register themselves with
GFS using the function register_lock_proto()

" The module registers a structure containing a
structure of operations that the module
implements

" Operations: mount, unmount, lock, unlock,
release and reset

Operations

" Mount − Called once at mount time to set up the
lock space

• Table Name − a name identifying the lock space
to be used. (e.g. The Pool name)

• Call Back − Allows the locking module to ask
GFS to unlock a lock

" Unmount − Called at unmount time to close the
lock space

Operations

" Lock − Acquire a Global Lock (Glock)

• Lock Number

• Action − Acquire, Try, or Test

• Flags − Shared, Commute, and Commute_Mod

• Returns − Held, Shared, Cacheable, Expired, Need_S,
and Need_E

" Unlock − Unlock a Glock

• Lock Number

• Flags − Modified

Currently Implemented Protocols

" Nolock − Dummy locks for local file systems

" Dlock−0.6 − Old lock specification
(Exclusive locks, Synchronous)

" Dlock−0.9.4 − The 0.9.4 specification
(Reader/Writer, Asynchronous)

" Dlip−0.9.5 − The 0.9.5 specification over
TCP/IP (drives do not need to support Dlock)

" Future: DLM ?

Recovery

" A FSCK is the classic means of recovery
after a crash

−Slow (time proportional to FS size)

−The file system must be offline

−Not acceptable for shared disk file systems

−Now functional for GFS, will be improved

" Journaling solves these problems

−Recovery time proportional to FS activity

−Online recovery is possible

Layout for Journaling

" Having multiple clients share a journal is too
complex and inefficient

" Each client gets its own journal space

" Each journal space is protected by one lock that is
acquired at mount time and released at unmount (or
crash) time.

" Each journal can be on its own disk for greater
parallelism

" Each journal must be visible to all clients (for
recovery)

GFS Layout

Super Block

Journal 0

Journal 3

Journal 2

Journal 1

RGRP 0

RGRP 1

Glock 0

Glock 1

Glock 2

Glock 3

Glock 4

Glocks 5−1000

Glocks 1001−2000

Journal Entries

" Composed of the metadata blocks changed
during that operation (and a header)

" Each entry has one or more Glocks associated
with it

−Standard GFS locks that protect each piece of
metadata

−For instance, a creat() entry would have locks
for the directory, the new dinode, and the
bitmaps.

A Journal Entry (in memory)

Journal Entry

Lock 10

Directory Bitmaps

Lock 5

New inode

Lock 7

Buffer 0 Buffer 3Buffer 2

Buffer 1

Journaling

" Asynchronous

" Similar method to XFS

" Multiple journal entries are cached in−core

" Entries are committed to disk in groups
asynchronously

" Metadata buffers for a journal entry are pinned in
memory (can’t be synced) until the entry is
committed.

" When journal write is complete, dirty metadata
buffers can be synced

Journaling in GFS

" All journal entries are linked to one or more
Glocks

" Before Glock is released for other machine:

1. Flush journal entries for Glock to log

2. Sync in−place metadata buffers

3. Sync in−place data buffers

" Only transactions dependent on the requested
Glock need to be flushed (or indirectly
dependent)

Journaling in GFS

2 3 6 8
Glock #Journal

Entry
1

2

3

4

XXX

XX

XX

XX

X represents in−memory
metadata buffers which will
be written to the journal

" Glock 6 is requested
by another machine

" flush entries 1,2,4 to
log in order

" in−place metadata
and data buffers are
synced for Glock 6

" Glock 6 is released

Journaling in GFS

" Initial version will by synchronous to allow
work on recovery

" This is quicker and orthogonal to recovery code

" Performance will be improved after recovery is in
place by moving to async method

" The journal entry and in−place metadata are
synced before locks are released for each
operation

Recovery − Initiation

" Journaled recovery is initiated by:
" mount time check if any journals were shutdown

uncleanly

" locking module reports an expired client when it polls
or detects expired machines

" client tries to acquire Glock and locking module
reports it’s expired

" In each case, recovery kernel thread is called
with expired client’s ID

" Machine attempts to begin recovery by trying
to acquire journal lock of failed client

Recovery − Failed Clients

" A client which fails to heartbeat its locks but
is still alive could do IO while other
machines are trying to recover for it.

" Causes filesystem corruption
" Two solutions:

" Forcably disable failed client (shoot it in head)
" Fence out all IO from the failed client using Fibre

Channel switch

" This is the first step of recovery after
acquiring the journal lock of failed client

Recovery of Journal

" Find head and tail of journal entries

" Ignore partially committed entries

" For each entry

" try to acquire all locks associated with that entry

" determine whether to replay it and do so if
needed

" Mark all expired locks not expired for failed
client

" Mark the journal as recovered

Replaying Entries

" Decision to replay entry is based on
generation number in primary pieces of
metadata

" dinode

" bitmap headers

" When these are written to log, generation
number is incremented

" Replay journal entry if generation numbers in
entry are larger than in−place data

Recovery

" Machines can continue to work during
recovery unless they need a lock which was
held by a failed client

" Advantage over FSCK

Performance

" Test configuration

" 4 Alphas with Linux kernel 2.2.11
• 21164, 533 Mhz, 128 MB memory

• Qlogic 2100 FC adapters

" 4 four−disk JBODS (16 drives)
• Seagate ST39175FC "Barracuda" 9 GB disks

• Dlock version 0.9.4

• Each JBOD is a separate striped subpool within one
GFS filesystem

" Brocade Silkworm II FC switch

Scalability

" One to four machines are added to a GFS
filesystem of constant size

" Workload: 1 million random operations
consisting of 50% reads, 25%
appends/creates, 25% unlinks

" Each machine performs its workload in
separate directory and subpool

1

1.
52

2.
53

3.
54

1
1.

5
2

2.
5

3
3.

5
4

Speedup

M
ac

hi
ne

s

lin
e

1

Creates per Second

" Comparison of Extendible Hashing directory
structure to Linear directory structure

" GFS and Ext2FS both create a million entry
directory

" Measured creates per second at constant
intervals as directory was filled

" GFS speed levels off due to uncached hash
table and leaf blocks

0
1

2
3

4
5

6
7

8
9

10

x 10
5

0

500

1000

1500

2000

2500

D
irectory E

ntries

Creates per Second

D
irectory E

ntries C
reated per S

econd

G
FS

E
xt2FS

 Single Machine Bandwidth

" One Alpha writing to GFS filesystem
composed of eight striped disks

" Variable transfer size and request size

" transfer sizes: 64 KB to 1 GB

" request sizes: 64 KB to 4 MB

" Writing and reading

" writing peaked at 50 MB/sec

" reading peaked at 40 MB/sec

Future Work

" Journaling and recovery

" Growable File Systems

" Some sort of block devices over IP

" Scalability: 4, 8, 16, 32, ... 2^64

" Application level testing: NFS and web
serving clusters

" Ports to other OSs (FreeBSD, Solaris, back to
IRIX)

