EXT2 Futures

Theodore Ts'o VA Linux Systems

tytso@valinux.com

Agenda

- Historical Review of Linux Filesystems
 Minix, Ext, Ext2, Xiafs
- Ext2 Philosophy
- Planned New Features
- Ext2 and Other Filesystems
- Conclusion

In The Beginning....

- Minix filesystem
 - Design taken from Minix, implementation by Linux Torvalds
 - 14 character filenames
 - 64k limits: # of blocks, inodes
 - indirect block scheme: 7+1+1
- Ext filesystem
 - Implementation and Design by Remy Card
 - variable length filenames
 - linked list of free blocks and inodes
 - indirect block scheme: 8+1+1

- Update of the Ext filesystem
- Used block, inode allocation bitmaps instead of freelists
- Added triple indirection block
- Added "cylinder groups" aka block groups
- Added fast symbolic links
- Smarter block, inode allocation policies
 - Directory balancing across block groups
 - Block preallocation

3

Historical Sidenote: Xiafs

- Written by Frank Xia, circa 1993
- Simple extension of Minix
 - Added variable-length filenames
 - Retained 7+1+1 indirect block scheme
 - Retained contiguous inode table, allocation bitmaps
- Simpler than ext2, so code become stable faster
- Author proposed renaming xiafs to linuxfs

General Ext2 philosophy

- Trailing edge technology --- done well
- Little in ext2fs which is new and innovative; but we knew what worked well and what didn't.
 - Example: e2fsck speed optimizations
- Standard Unix filesystem semantics
- Has become filesystem of choice within Linux community
 - Conservative changes to retain stability
 - Forwards/backwards compatibility of filesystem format

Planned New Features

- Ext2 Journaling
- Ext2 B Trees
 - Directories
 - Extents
- Compression
- ACL
- Support for Posix Privileges

Ext2 Journaling

- Implementation by Stephen Tweedie, Beta quality
- Goal: High Availability
 - Fast recovery in the event of a system failure
- Described in more detail by Stephen at this conference

Ext2 and B-trees

- Currently being implemented by me
 - Progress has been slow
 - Design not finalized
 - One of the reasons why I started working for VA Linux Systems
- Key B-Tree features
 - Exterior B-trees
 - Hashed key (for filenames)
 - Pre-emptive splitting

- Needed for applications that want to put large number of files in one directory
 - Historical side note: Bell Laboratories assumed that applications would use nested directories if this was an issue:
 - /home/t/y/t/tytso
- Challenge: POSIX readdir(), telldir(), and seekdir() semantics

9

B-Trees and Extents

- Indirect blocks are a performance problem
 - Large files with double and triple indirection blocks require reference to the indirect blocks. Indirect blocks are often flushed from the cache by the time they are needed.
 - Especially a problem with 1k blocks
 - 90-95% of files in a typical ext2 filesystem are contiguous
- Solution: Store block mapping information as extents in the inode

B-Trees and Extents, II

- What does this have to do with B-Trees?
- Problem: What happens if the number of extents overflows the inode?
 - Random-access writes causing fragmented block allocation
 - Insertion into sorted list problematic
- Solution: use a B-tree to store the extent information, indexed by logical block number

B-Trees and Robustness

- B-tree structures have many block pointers
- This makes recovery in the face of filesystem corruption to be challenging
 - Corruption will happen
 - Kernel bugs
 - Power failures and other unclean shutdowns
- Possible soslutions
 - Journalling
 - Magic numbers and checksums in B-tree directories to help in the recovery process
 - More investigation needed!

13

Ext2 Compression

- Patches maintained by Peter Moulder
- File-level compression
 - Blocks are ganged together into clusters
 - Clusters are compressed
- Importance given cost of disks?

Ext2 ACL's

- Implementation by Remy Card; recently picked up by a group of students
- POSIX ACL semantics
 - per-file ACL's
 - default directory creation ACL's
- Efficiency concerns
 - ACL's are shared across files when possible
 - Reference counting

POSIX Priviliges

- Design from (abandoned) POSIX working group draft
 - Split superuser privilege into an array of fine-grained privileges (ala VMS)
 - Executables have two privilege bitstrings
 - Allowed
 - Forced
- Problems
 - System administration much more complicated
 - Unfamiliar (un-Unix-like) model

Ext2 and Privileges

- Rough first cut implementation done by Andrew Morgan
- General Design
 - Implement ability to associate attribute data with inodes
 - Small data sets only; kernel-only access
- Needs polishing before integration into ext2 mainline

Ext2 and Other Filesystems

- Advantage of Ext2
 - Large installed base
 - Users can take advantage of new features without dump/restore
- Disadvantages of Ext2fs
 - Basically, in design a FFS derivative
 - The statically allocated inode table can't really be changed without retooling everything
 - Bacause of the large user base, filesystem format changes have to be made very conservatively

Conclusion

- Ext2 as a long line of Linux's filesystems
- New features are still being planned and worked on
- In the future some other filesystem may supplant ext2 filesystem. (Just as in the future Linux may be supplanted by something else new.)